HOL proofs of two theorems about unification

Marek Materzok

22 November 2007

Useful theorems

Values constructed by different constructors are different.

let term_distinct = prove_constructors_distinct term_rec
val term_distinct : thm =
|- ('a a’. ~(Variable a = Comnstant a’)) /\
('a a0’ al’. ~(Variable a = Apply a0’ al’)) /\
('a a0’ al’. “(Constant a = Apply a0’ al’))

Constructors are injective.

let term_injective = prove_constructors_injective term_re
val term_injective : thm =
|- ('a a’. Variable a = Variable a’ <=> a = a’) /\
('a a’. Constant a = Constant a’ <=> a = a’) /\
(a0 al a0’ al’. Apply a0 al = Apply a0’ al’ <=>
a0 = a0’ /\ al = al’)

Useful theorems

One can do case analysis on constructors. (like induction, but
without inductive hypotheses — simpler)

let term_cases = prove_cases_thm term_ind;;
val term_cases : thm =
|- 'x. (?a. x = Variable a)
(7a. x = Constant a)
(?7a0 al. x = Apply a0 al)

Theorems for handling packed substitutions:

let subst_cases = prove_cases_thm subst_ind;;
val subst_cases : thm = |- !x. 7a. x = Makesubst a
let subst_injective = prove_constructors_injective subst_r¢
val subst_injective : thm =
|- 'a a’. Makesubst a = Makesubst a’ <=> a = a’

First theorem

Theorem
Let t be a term such that x € FV(t) and t # x. Then the
equation x = t has no unifiers.

Proof.
Let w be a weight function defined as follows:
w(x) =1
w(c) =1
w(tity) = w(tr) + w(tz) + 1

We see that t = t;t, for some terms t; and t3, so w(x) < w(t).
Assume that o is an unifier of x = t. Then we have
w(xo) < w(to), so xo # to, which is a contradiction.

O

Technique: simplifying assumptions

Sometimes rewriting allows to get simpler, more useful
assumptions. The DISCH_TAC tactic is a shorthand for DISCH_THEN
ASSUME TAC, so it's easy to do some rewriting on an assumption.

Goal: ‘7 (7subst. isunifier subst

(Addequation Emptysystem (Variable n) (Apply a0 al)))
e (DISCH_THEN (CHOOSE_TAC o

REWRITE_RULE [unifierdef;appltermdef]));;
Added assumption: ‘applterm subst (Variable n) =

Apply (applterm subst a0) (applterm subst al)‘

Technique: subgoals

Subgoals allow to do forward reasoning easily. Proven subgoal is
added to the list of assumptions.

e (SUBGOAL_TAC ""
‘~“(termweight (applterm subst (Variable n)) =
termweight (applterm subst (Apply a0 al)))‘
[ASM_MESON_TAC[13;15;ARITH_RULE ‘a<b ==> “(a=b) ‘11);;

Lemma 1

Lemma
For all t, w(t) > 0.

Proof.

Straightforward case analysis. O

g ‘!'t. termweight t > 0¢;;

GEN_TAC; ;

(STRUCT_CASES_TAC (SPEC ‘t:term‘ term_cases));;
(REWRITE_TAC [termweightdef] THEN ARITH_TAC);;
(REWRITE_TAC [termweightdef] THEN ARITH_TAC);;
(REWRITE_TAC [termweightdef] THEN ARITH_TAC);;
let 15 = top_thm();;

® ®© ® © O

Technique: proving arithmetic inequalities

Tactic ARITH_TAC attempts to prove a true sentence about natural
numbers. The sentence may have the form of an implication — the
prover will then use the left hand side as an assumption.

For example, the following sentence can be proved with
ARITH_TAC:

‘termweight (applterm s al) >= termweight al
==> termweight (applterm s a0) >=
termweight (applterm s (Variable n)) +
termweight a0 - 1
==> termweight (applterm s a0) +
termweight (applterm s al) + 1 >=
termweight (applterm s (Variable n)) +
(termweight a0 + termweight al + 1) - 1°

Lemma 2

Lemma
For all substitutions o and terms t, w(to) >= w(t).

Proof.

Proof by structural induction over t.
» t = x. By definition w(x) =1, by Lemma 1 w(xo) > 0, so
w(xo) >= w(x).
» t = c. We have w(co) = w(c).
> t = titr. We have
w(to) = w(tio) + w(tao) +1 >= w(t1) + w(tz) + 1 = w(t).
L]

Technique: undischarge

Because ARITH_TAC can't use the assumption list, assumptions
required for proving the goal must be moved to the goal. That's
exactly what UNDISCH_TAC does.

Goal: ‘termweight (applterm s (Variable a)) >=
termweight (Variable a)°
e (ASSUME_TAC (SPEC ‘applterm s (Variable a)‘ 11));;
e (UNDISCH_TAC
‘termweight (applterm s (Variable a)) > 0°);;
Goal: ‘termweight (applterm s (Variable a)) > 0
==> termweight (applterm s (Variable a)) >=
termweight (Variable a)°

Lemma 3

Lemma
Let t be a term. Then w(t) > 1 iff there are terms t1, tp such that
t = t1tr.

Proof.
Simple case analysis.
> t =x or t = c. Then both left and right side is false.

> t = titp. By Lemma 1 and the definition of w, left side is
true, right side is of course also true.

Technique: case analysis for types

With a cases theorem about some type, one can split the goal to
several subgoals.

val term_cases : thm =
[- 'x. (?a. x = Variable a)
(?7a. x = Constant a)
(7a0 al. x = Apply a0 al)
Goal: ‘termweight t > 1 <=> (7tl t2. t = Apply t1 t2)°
e (STRUCT_CASES_TAC (SPEC ‘t:term‘ term_cases));;
We have three new goals now.

Lemma 4

Lemma
If x € FV/(t), then for all substitutions o we have

w(to) > w(xo) + w(t) — 1.

Proof.

Induction over t.
» t =y. Because x € FV(y), x =y, so trivial.
» t = c. Both sides are equal to 1.

> t = t1tp. Suppose, without loss of generality, that
x € FV(t1). So we have w(tio) > w(xo) + w(t1) — 1. By
Lemma 2 we have w(tyo) > w(t2). Thus,

W(tlo') + W(tQO') +1
w(xo) + w(ty) — 1+ w(t)
w(xo)+ w(t) —1

w((tit2)o) =

v

Technique: case analysis

Using a disjunction one can create new goals identical to current
goal, but with different assumptions.

Here | use SUBGOAL_THEN, which allows to do something else with
a subgoal than assuming it.

e (SUBGOAL_THEN
‘varoccursinterm n a0 varoccursinterm n alf
DISJ_CASES_TAC);;

e (ASM_MESON_TAC[varoccursintermdef]);;

We now have two goals.

Lemma 5

Lemma
Let x € FV(t) and w(t) > 1. Then w(xc) < w(to).

Proof.
From Lemma 4 we have w(to) > w(xo) 4+ w(t) — 1. So, because

w(t) > 1, w(to) > w(xo). O

Second theorem

Theorem
Let t be a term such that x ¢ FV(t). Then o = [x/t] is the mgu
of x = t.

Proof.

Obviously, o is an unifier of x = t. Let 7 be any unifier of x = t.
Let 7/ be a substitution such that x7’ = x and for all y # x

y7" = y7. I'll show that o7/ = 7.

Let y be a variable different than x. Then obviously

yor' = y7' = y7. It remains to show that xo7’ = x7. By
definition of o we have xo7’ = t7’. Because x ¢ FV/(t), we have
t7' = t7, and because 7 is a unifier of x = t, then t7 = x7, which
finishes the proof. []

Technique: using tautologies

Sometimes some tautology is needed to push the proof forward.
Tautologies can be easily proven with TAUT.

e (DISJ_CASES_TAC (TAUT ‘n’=n:num ~“(n’=n:num)‘));;

Lemma 6

Lemma
Suppose that x ¢ FV/(t). Then t[x/u] =t for all u.

Proof.

Structural induction over t.
» t =y. Because x € y we have x # y, so y[x/u] =y.
» t = c. Trivial.
> t=titr. Then x € t; and x & to, so
(t1t2)[x/u] = ta[x/u]ta[x/u] = t1to.

Lemma 7

Lemma
Let t be a term such that x ¢ FV(t). Then o = [x/t] is an unifier
of x =t.

Proof.
Lemma 6. O

Lemma 8

Lemma

Assume that x & t. Let o be any substitution, let T be a
substitution such that xT = x and yT = yo for y # x. Then
to = tT.

Proof.

Structural induction over t.

> t =y. Because x € y we have x # y. So yo = y1 by
definition of 7.

» t = c. Trivial.

> t = titp. Easy.

