HOL proofs of two theorems about unification

Marek Materzok

22 November 2007

Useful theorems

Values constructed by different constructors are different.

Constructors are injective.

Useful theorems

One can do case analysis on constructors. (like induction, but without inductive hypotheses – simpler)

Theorems for handling packed substitutions:

First theorem

Theorem

Let t be a term such that $x \in FV(t)$ and $t \neq x$. Then the equation x = t has no unifiers.

Proof.

Let w be a weight function defined as follows:

$$egin{aligned} w(x) &= 1 \ w(c) &= 1 \ w(t_1t_2) &= w(t_1) + w(t_2) + 1 \end{aligned}$$

We see that $t = t_1t_2$ for some terms t_1 and t_2 , so w(x) < w(t). Assume that σ is an unifier of x = t. Then we have $w(x\sigma) < w(t\sigma)$, so $x\sigma \neq t\sigma$, which is a contradiction.

Technique: simplifying assumptions

Sometimes rewriting allows to get simpler, more useful assumptions. The DISCH_TAC tactic is a shorthand for DISCH_THEN ASSUME_TAC, so it's easy to do some rewriting on an assumption.

```
Goal: '~(?subst. isunifier subst
          (Addequation Emptysystem (Variable n) (Apply a0 a1)))'
e (DISCH_THEN (CHOOSE_TAC o
          REWRITE_RULE [unifierdef;appltermdef]));;
Added assumption: 'applterm subst (Variable n) =
          Apply (applterm subst a0) (applterm subst a1)'
```

Technique: subgoals

Subgoals allow to do forward reasoning easily. Proven subgoal is added to the list of assumptions.

Lemma

For all t, w(t) > 0.

Proof.

Straightforward case analysis.

```
g '!t. termweight t > 0';;
e GEN_TAC;;
e (STRUCT_CASES_TAC (SPEC 't:term' term_cases));;
e (REWRITE_TAC [termweightdef] THEN ARITH_TAC);;
e (REWRITE_TAC [termweightdef] THEN ARITH_TAC);;
e (REWRITE_TAC [termweightdef] THEN ARITH_TAC);;
let 15 = top_thm();;
```

Technique: proving arithmetic inequalities

Tactic ARITH_TAC attempts to prove a true sentence about natural numbers. The sentence may have the form of an implication — the prover will then use the left hand side as an assumption. For example, the following sentence can be proved with ARITH_TAC:

```
'termweight (applterm s a1) >= termweight a1
==> termweight (applterm s a0) >=
    termweight (applterm s (Variable n)) +
        termweight a0 - 1
==> termweight (applterm s a0) +
        termweight (applterm s a1) + 1 >=
    termweight (applterm s (Variable n)) +
    (termweight a0 + termweight a1 + 1) - 1'
```

Lemma

For all substitutions σ and terms t, $w(t\sigma) >= w(t)$.

Proof.

Proof by structural induction over *t*.

- ▶ t = x. By definition w(x) = 1, by Lemma 1 $w(x\sigma) > 0$, so $w(x\sigma) >= w(x)$.
- t = c. We have $w(c\sigma) = w(c)$.
- ▶ $t = t_1 t_2$. We have $w(t\sigma) = w(t_1\sigma) + w(t_2\sigma) + 1 >= w(t_1) + w(t_2) + 1 = w(t)$.

Technique: undischarge

Because ARITH_TAC can't use the assumption list, assumptions required for proving the goal must be moved to the goal. That's exactly what UNDISCH_TAC does.

Lemma

Let t be a term. Then w(t) > 1 iff there are terms t_1 , t_2 such that $t = t_1t_2$.

Proof.

Simple case analysis.

- ightharpoonup t = x or t = c. Then both left and right side is false.
- ▶ $t = t_1t_2$. By Lemma 1 and the definition of w, left side is true, right side is of course also true.

Technique: case analysis for types

With a cases theorem about some type, one can split the goal to several subgoals.

Lemma

If $x \in FV(t)$, then for all substitutions σ we have $w(t\sigma) \ge w(x\sigma) + w(t) - 1$.

Proof.

Induction over t.

- ▶ t = y. Because $x \in FV(y)$, x = y, so trivial.
- ightharpoonup t = c. Both sides are equal to 1.
- ▶ $t = t_1t_2$. Suppose, without loss of generality, that $x \in FV(t_1)$. So we have $w(t_1\sigma) \ge w(x\sigma) + w(t_1) 1$. By Lemma 2 we have $w(t_2\sigma) \ge w(t_2)$. Thus,

$$egin{aligned} w((t_1t_2)\sigma) &= w(t_1\sigma) + w(t_2\sigma) + 1 \ &\geq w(x\sigma) + w(t_1) - 1 + w(t_2) \ &= w(x\sigma) + w(t) - 1 \end{aligned}$$

Technique: case analysis

Using a disjunction one can create new goals identical to current goal, but with different assumptions.

Here I use SUBGOAL_THEN, which allows to do something else with a subgoal than assuming it.

Lemma

Let $x \in FV(t)$ and w(t) > 1. Then $w(x\sigma) < w(t\sigma)$.

Proof.

From Lemma 4 we have $w(t\sigma) \ge w(x\sigma) + w(t) - 1$. So, because w(t) > 1, $w(t\sigma) > w(x\sigma)$.

Second theorem

Theorem

Let t be a term such that $x \notin FV(t)$. Then $\sigma = [x/t]$ is the mgu of x = t.

Proof.

Obviously, σ is an unifier of x=t. Let τ be any unifier of x=t. Let τ' be a substitution such that $x\tau'=x$ and for all $y\neq x$ $y\tau'=y\tau$. I'll show that $\sigma\tau'=\tau$. Let y be a variable different than x. Then obviously $y\sigma\tau'=y\tau'=y\tau$. It remains to show that $x\sigma\tau'=x\tau$. By definition of σ we have $x\sigma\tau'=t\tau'$. Because $x\notin FV(t)$, we have $t\tau'=t\tau$, and because τ is a unifier of x=t, then $t\tau=x\tau$, which finishes the proof.

Technique: using tautologies

Sometimes some tautology is needed to push the proof forward. Tautologies can be easily proven with TAUT.

```
e (DISJ_CASES_TAC (TAUT 'n'=n:num ~(n'=n:num)'));;
```

Lemma

Suppose that $x \notin FV(t)$. Then t[x/u] = t for all u.

Proof.

Structural induction over t.

- ▶ t = y. Because $x \notin y$ we have $x \neq y$, so y[x/u] = y.
- t = c. Trivial.
- ▶ $t = t_1t_2$. Then $x \notin t_1$ and $x \notin t_2$, so $(t_1t_2)[x/u] = t_1[x/u]t_2[x/u] = t_1t_2$.

Lemma

Let t be a term such that $x \notin FV(t)$. Then $\sigma = [x/t]$ is an unifier of x = t.

Proof.

Lemma 6.

Lemma

Assume that $x \notin t$. Let σ be any substitution, let τ be a substitution such that $x\tau = x$ and $y\tau = y\sigma$ for $y \neq x$. Then $t\sigma = t\tau$.

Proof.

Structural induction over t.

- ▶ t = y. Because $x \notin y$ we have $x \neq y$. So $y\sigma = y\tau$ by definition of τ .
- t = c. Trivial.
- $ightharpoonup t = t_1 t_2$. Easy.