HOL proofs of two theorems about unification

Marek Materzok

22 November 2007

Useful theorems

Values constructed by different constructors are different.
\# let term_distinct = prove_constructors_distinct term_rec val term_distinct : thm =

$$
\begin{aligned}
& \text { I- (!a a'. ~(Variable a = Constant a')) / } \\
& \text { (!a a0' a1'. ~(Variable a = Apply a0' a1')) / } \\
& \text { (!a a0' a1'. ~ (Constant } a=\text { Apply } a 0^{\prime} \text { a1')) }
\end{aligned}
$$

Constructors are injective.
\# let term_injective = prove_constructors_injective term_r val term_injective : thm =

I- (!a a'. Variable a = Variable a' $\Leftrightarrow>$ a = a') Λ (!a a'. Constant $a=$ Constant $\left.a^{\prime} \ll>a=a^{\prime}\right) / \bigwedge$ (!a0 a1 a0' a1'. Apply a0 a1 = Apply a0' a1' <<>

$$
\left.a 0=a 0^{\prime} / \backslash a 1=a 1^{\prime}\right)
$$

Useful theorems

One can do case analysis on constructors. (like induction, but without inductive hypotheses - simpler)

```
# let term_cases = prove_cases_thm term_ind;;
```

val term_cases : thm =

I- !x. (?a. x = Variable a)
(?a. $\mathrm{x}=$ Constant a)
(?a0 a1. x = Apply a0 a1)
Theorems for handling packed substitutions:
let subst_cases = prove_cases_thm subst_ind; ;
val subst_cases : thm = |- !x. ?a. x = Makesubst a
let subst_injective = prove_constructors_injective subst_re
val subst_injective : thm =
|- !a a'. Makesubst a = Makesubst a' <=> a = a'

First theorem

Theorem

Let t be a term such that $x \in F V(t)$ and $t \neq x$. Then the equation $x=t$ has no unifiers.

Proof.
Let w be a weight function defined as follows:

$$
\begin{aligned}
w(x) & =1 \\
w(c) & =1 \\
w\left(t_{1} t_{2}\right) & =w\left(t_{1}\right)+w\left(t_{2}\right)+1
\end{aligned}
$$

We see that $t=t_{1} t_{2}$ for some terms t_{1} and t_{2}, so $w(x)<w(t)$. Assume that σ is an unifier of $x=t$. Then we have $w(x \sigma)<w(t \sigma)$, so $x \sigma \neq t \sigma$, which is a contradiction.

Technique: simplifying assumptions

Sometimes rewriting allows to get simpler, more useful assumptions. The DISCH_TAC tactic is a shorthand for DISCH_THEN ASSUME_TAC, so it's easy to do some rewriting on an assumption.

Goal: '~ (?subst. isunifier subst
(Addequation Emptysystem (Variable n) (Apply a0 a1)))‘
e (DISCH_THEN (CHOOSE_TAC o
REWRITE_RULE [unifierdef;appltermdef]));
Added assumption: 'applterm subst (Variable n) = Apply (applterm subst a0) (applterm subst a1)‘

Technique: subgoals

Subgoals allow to do forward reasoning easily. Proven subgoal is added to the list of assumptions.
e (SUBGOAL_TAC ""
'~ (termweight (applterm subst (Variable n)) =
termweight (applterm subst (Apply a0 a1)))'
[ASM_MESON_TAC[13;15;ARITH_RULE 'a<b ==> ~ (a=b)‘]]);

Lemma 1

Lemma
For all $t, w(t)>0$.
Proof.
Straightforward case analysis.
g '!t. termweight t > 0'; ;
e GEN_TAC; ;
e (STRUCT_CASES_TAC (SPEC 't:term' term_cases)); ;
e (REWRITE_TAC [termweightdef] THEN ARITH_TAC); ;
e (REWRITE_TAC [termweightdef] THEN ARITH_TAC); ;
e (REWRITE_TAC [termweightdef] THEN ARITH_TAC); ;
let 15 = top_thm();

Technique: proving arithmetic inequalities

Tactic ARITH_TAC attempts to prove a true sentence about natural numbers. The sentence may have the form of an implication - the prover will then use the left hand side as an assumption. For example, the following sentence can be proved with ARITH_TAC:

```
'termweight (applterm s a1) >= termweight a1
    ==> termweight (applterm s a0) >=
    termweight (applterm s (Variable n)) +
        termweight a0 - 1
==> termweight (applterm s a0) +
    termweight (applterm s a1) + 1 >=
    termweight (applterm s (Variable n)) +
    (termweight a0 + termweight a1 + 1) - 1'
```


Lemma 2

Lemma

For all substitutions σ and terms $t, w(t \sigma)>=w(t)$.
Proof.
Proof by structural induction over t.

- $t=x$. By definition $w(x)=1$, by Lemma $1 w(x \sigma)>0$, so $w(x \sigma)>=w(x)$.
- $t=c$. We have $w(c \sigma)=w(c)$.
- $t=t_{1} t_{2}$. We have

$$
w(t \sigma)=w\left(t_{1} \sigma\right)+w\left(t_{2} \sigma\right)+1>=w\left(t_{1}\right)+w\left(t_{2}\right)+1=w(t)
$$

Technique: undischarge

Because ARITH_TAC can't use the assumption list, assumptions required for proving the goal must be moved to the goal. That's exactly what UNDISCH_TAC does.

```
Goal: 'termweight (applterm s (Variable a)) >=
    termweight (Variable a)'
e (ASSUME_TAC (SPEC 'applterm s (Variable a)' l1));
e (UNDISCH_TAC
    'termweight (applterm s (Variable a)) > 0'); ;
Goal: 'termweight (applterm s (Variable a)) > 0
    ==> termweight (applterm s (Variable a)) >=
        termweight (Variable a)'
```


Lemma 3

Lemma
Let t be a term. Then $w(t)>1$ iff there are terms t_{1}, t_{2} such that $t=t_{1} t_{2}$.

Proof.
Simple case analysis.

- $t=x$ or $t=c$. Then both left and right side is false.
- $t=t_{1} t_{2}$. By Lemma 1 and the definition of w, left side is true, right side is of course also true.

Technique: case analysis for types

With a cases theorem about some type, one can split the goal to several subgoals.
val term_cases : thm =
1- !x. (?a. x = Variable a) (?a. $\mathrm{x}=$ Constant a) (?a0 a1. $x=$ Apply a0 a1)
Goal: 'termweight t > $1<=>(? \mathrm{t} 1 \mathrm{t} 2 . \mathrm{t}=$ Apply t1 t2)' e (STRUCT_CASES_TAC (SPEC 't:term' term_cases)); ; We have three new goals now.

Lemma 4

Lemma

If $x \in F V(t)$, then for all substitutions σ we have
$w(t \sigma) \geq w(x \sigma)+w(t)-1$.

Proof.

Induction over t.

- $t=y$. Because $x \in F V(y), x=y$, so trivial.
- $t=c$. Both sides are equal to 1 .
- $t=t_{1} t_{2}$. Suppose, without loss of generality, that $x \in F V\left(t_{1}\right)$. So we have $w\left(t_{1} \sigma\right) \geq w(x \sigma)+w\left(t_{1}\right)-1$. By Lemma 2 we have $w\left(t_{2} \sigma\right) \geq w\left(t_{2}\right)$. Thus,

$$
\begin{aligned}
w\left(\left(t_{1} t_{2}\right) \sigma\right) & =w\left(t_{1} \sigma\right)+w\left(t_{2} \sigma\right)+1 \\
& \geq w(x \sigma)+w\left(t_{1}\right)-1+w\left(t_{2}\right) \\
& =w(x \sigma)+w(t)-1
\end{aligned}
$$

Technique: case analysis

Using a disjunction one can create new goals identical to current goal, but with different assumptions.
Here I use SUBGOAL_THEN, which allows to do something else with a subgoal than assuming it.
e (SUBGOAL_THEN
'varoccursinterm n a0 varoccursinterm n a1'
DISJ_CASES_TAC); ;
e (ASM_MESON_TAC[varoccursintermdef]);
We now have two goals.

Lemma 5

Lemma
Let $x \in F V(t)$ and $w(t)>1$. Then $w(x \sigma)<w(t \sigma)$.
Proof.
From Lemma 4 we have $w(t \sigma) \geq w(x \sigma)+w(t)-1$. So, because $w(t)>1, w(t \sigma)>w(x \sigma)$.

Second theorem

Theorem
Let t be a term such that $x \notin F V(t)$. Then $\sigma=[x / t]$ is the mgu of $x=t$.

Proof.

Obviously, σ is an unifier of $x=t$. Let τ be any unifier of $x=t$. Let τ^{\prime} be a substitution such that $x \tau^{\prime}=x$ and for all $y \neq x$ $y \tau^{\prime}=y \tau$. I'll show that $\sigma \tau^{\prime}=\tau$.
Let y be a variable different than x. Then obviously $y \sigma \tau^{\prime}=y \tau^{\prime}=y \tau$. It remains to show that $x \sigma \tau^{\prime}=x \tau$. By definition of σ we have $x \sigma \tau^{\prime}=t \tau^{\prime}$. Because $x \notin F V(t)$, we have $t \tau^{\prime}=t \tau$, and because τ is a unifier of $x=t$, then $t \tau=x \tau$, which finishes the proof.

Technique: using tautologies

Sometimes some tautology is needed to push the proof forward. Tautologies can be easily proven with TAUT.
e (DISJ_CASES_TAC (TAUT ' n '=n:num ~(n'=n:num)')); ;

Lemma 6

Lemma

Suppose that $x \notin F V(t)$. Then $t[x / u]=t$ for all u.
Proof.
Structural induction over t.

- $t=y$. Because $x \notin y$ we have $x \neq y$, so $y[x / u]=y$.
- $t=c$. Trivial.
- $t=t_{1} t_{2}$. Then $x \notin t_{1}$ and $x \notin t_{2}$, so $\left(t_{1} t_{2}\right)[x / u]=t_{1}[x / u] t_{2}[x / u]=t_{1} t_{2}$.

Lemma 7

Lemma

Let t be a term such that $x \notin F V(t)$. Then $\sigma=[x / t]$ is an unifier of $x=t$.

Proof.
Lemma 6.

Lemma 8

Lemma

Assume that $x \notin t$. Let σ be any substitution, let τ be a substitution such that $x \tau=x$ and $y \tau=y \sigma$ for $y \neq x$. Then $t \sigma=t \tau$.

Proof.
Structural induction over t.

- $t=y$. Because $x \notin y$ we have $x \neq y$. So $y \sigma=y \tau$ by definition of τ.
- $t=c$. Trivial.
- $t=t_{1} t_{2}$. Easy.

