
HOL proofs of two theorems about unification

Marek Materzok

22 November 2007

Useful theorems

Values constructed by different constructors are different.

let term_distinct = prove_constructors_distinct term_rec;;
val term_distinct : thm =
|- (!a a’. ~(Variable a = Constant a’)) /\

(!a a0’ a1’. ~(Variable a = Apply a0’ a1’)) /\
(!a a0’ a1’. ~(Constant a = Apply a0’ a1’))

Constructors are injective.

let term_injective = prove_constructors_injective term_rec;;
val term_injective : thm =
|- (!a a’. Variable a = Variable a’ <=> a = a’) /\

(!a a’. Constant a = Constant a’ <=> a = a’) /\
(!a0 a1 a0’ a1’. Apply a0 a1 = Apply a0’ a1’ <=>

a0 = a0’ /\ a1 = a1’)

Useful theorems

One can do case analysis on constructors. (like induction, but
without inductive hypotheses – simpler)

let term_cases = prove_cases_thm term_ind;;
val term_cases : thm =
|- !x. (?a. x = Variable a)

(?a. x = Constant a)
(?a0 a1. x = Apply a0 a1)

Theorems for handling packed substitutions:

let subst_cases = prove_cases_thm subst_ind;;
val subst_cases : thm = |- !x. ?a. x = Makesubst a
let subst_injective = prove_constructors_injective subst_rec;;
val subst_injective : thm =

|- !a a’. Makesubst a = Makesubst a’ <=> a = a’

First theorem

Theorem
Let t be a term such that x ∈ FV (t) and t 6= x. Then the
equation x = t has no unifiers.

Proof.
Let w be a weight function defined as follows:

w(x) = 1

w(c) = 1

w(t1t2) = w(t1) + w(t2) + 1

We see that t = t1t2 for some terms t1 and t2, so w(x) < w(t).
Assume that σ is an unifier of x = t. Then we have
w(xσ) < w(tσ), so xσ 6= tσ, which is a contradiction.

Technique: simplifying assumptions

Sometimes rewriting allows to get simpler, more useful
assumptions. The DISCH TAC tactic is a shorthand for DISCH THEN
ASSUME TAC, so it’s easy to do some rewriting on an assumption.

Goal: ‘~(?subst. isunifier subst
(Addequation Emptysystem (Variable n) (Apply a0 a1)))‘

e (DISCH_THEN (CHOOSE_TAC o
REWRITE_RULE [unifierdef;appltermdef]));;

Added assumption: ‘applterm subst (Variable n) =
Apply (applterm subst a0) (applterm subst a1)‘

Technique: subgoals

Subgoals allow to do forward reasoning easily. Proven subgoal is
added to the list of assumptions.

e (SUBGOAL_TAC ""
‘~(termweight (applterm subst (Variable n)) =

termweight (applterm subst (Apply a0 a1)))‘
[ASM_MESON_TAC[l3;l5;ARITH_RULE ‘a<b ==> ~(a=b)‘]]);;

Lemma 1

Lemma
For all t, w(t) > 0.

Proof.
Straightforward case analysis.

g ‘!t. termweight t > 0‘;;
e GEN_TAC;;
e (STRUCT_CASES_TAC (SPEC ‘t:term‘ term_cases));;
e (REWRITE_TAC [termweightdef] THEN ARITH_TAC);;
e (REWRITE_TAC [termweightdef] THEN ARITH_TAC);;
e (REWRITE_TAC [termweightdef] THEN ARITH_TAC);;
let l5 = top_thm();;

Technique: proving arithmetic inequalities

Tactic ARITH TAC attempts to prove a true sentence about natural
numbers. The sentence may have the form of an implication – the
prover will then use the left hand side as an assumption.
For example, the following sentence can be proved with
ARITH TAC:

‘termweight (applterm s a1) >= termweight a1
==> termweight (applterm s a0) >=

termweight (applterm s (Variable n)) +
termweight a0 - 1

==> termweight (applterm s a0) +
termweight (applterm s a1) + 1 >=

termweight (applterm s (Variable n)) +
(termweight a0 + termweight a1 + 1) - 1‘

Lemma 2

Lemma
For all substitutions σ and terms t, w(tσ) >= w(t).

Proof.
Proof by structural induction over t.

I t = x . By definition w(x) = 1, by Lemma 1 w(xσ) > 0, so
w(xσ) >= w(x).

I t = c . We have w(cσ) = w(c).

I t = t1t2. We have
w(tσ) = w(t1σ) + w(t2σ) + 1 >= w(t1) + w(t2) + 1 = w(t).

Technique: undischarge

Because ARITH TAC can’t use the assumption list, assumptions
required for proving the goal must be moved to the goal. That’s
exactly what UNDISCH TAC does.

Goal: ‘termweight (applterm s (Variable a)) >=
termweight (Variable a)‘

e (ASSUME_TAC (SPEC ‘applterm s (Variable a)‘ l1));;
e (UNDISCH_TAC

‘termweight (applterm s (Variable a)) > 0‘);;
Goal: ‘termweight (applterm s (Variable a)) > 0

==> termweight (applterm s (Variable a)) >=
termweight (Variable a)‘

Lemma 3

Lemma
Let t be a term. Then w(t) > 1 iff there are terms t1, t2 such that
t = t1t2.

Proof.
Simple case analysis.

I t = x or t = c . Then both left and right side is false.

I t = t1t2. By Lemma 1 and the definition of w , left side is
true, right side is of course also true.

Technique: case analysis for types

With a cases theorem about some type, one can split the goal to
several subgoals.

val term_cases : thm =
|- !x. (?a. x = Variable a)

(?a. x = Constant a)
(?a0 a1. x = Apply a0 a1)

Goal: ‘termweight t > 1 <=> (?t1 t2. t = Apply t1 t2)‘
e (STRUCT_CASES_TAC (SPEC ‘t:term‘ term_cases));;
We have three new goals now.

Lemma 4

Lemma
If x ∈ FV (t), then for all substitutions σ we have
w(tσ) ≥ w(xσ) + w(t)− 1.

Proof.
Induction over t.

I t = y . Because x ∈ FV (y), x = y , so trivial.

I t = c . Both sides are equal to 1.

I t = t1t2. Suppose, without loss of generality, that
x ∈ FV (t1). So we have w(t1σ) ≥ w(xσ) + w(t1)− 1. By
Lemma 2 we have w(t2σ) ≥ w(t2). Thus,

w((t1t2)σ) = w(t1σ) + w(t2σ) + 1

≥ w(xσ) + w(t1)− 1 + w(t2)

= w(xσ) + w(t)− 1

Technique: case analysis

Using a disjunction one can create new goals identical to current
goal, but with different assumptions.
Here I use SUBGOAL THEN, which allows to do something else with
a subgoal than assuming it.

e (SUBGOAL_THEN
‘varoccursinterm n a0 varoccursinterm n a1‘
DISJ_CASES_TAC);;

e (ASM_MESON_TAC[varoccursintermdef]);;
We now have two goals.

Lemma 5

Lemma
Let x ∈ FV (t) and w(t) > 1. Then w(xσ) < w(tσ).

Proof.
From Lemma 4 we have w(tσ) ≥ w(xσ) + w(t)− 1. So, because
w(t) > 1, w(tσ) > w(xσ).

Second theorem

Theorem
Let t be a term such that x 6∈ FV (t). Then σ = [x/t] is the mgu
of x = t.

Proof.
Obviously, σ is an unifier of x = t. Let τ be any unifier of x = t.
Let τ ′ be a substitution such that xτ ′ = x and for all y 6= x
yτ ′ = yτ . I’ll show that στ ′ = τ .
Let y be a variable different than x . Then obviously
yστ ′ = yτ ′ = yτ . It remains to show that xστ ′ = xτ . By
definition of σ we have xστ ′ = tτ ′. Because x 6∈ FV (t), we have
tτ ′ = tτ , and because τ is a unifier of x = t, then tτ = xτ , which
finishes the proof.

Technique: using tautologies

Sometimes some tautology is needed to push the proof forward.
Tautologies can be easily proven with TAUT.

e (DISJ_CASES_TAC (TAUT ‘n’=n:num ~(n’=n:num)‘));;

Lemma 6

Lemma
Suppose that x 6∈ FV (t). Then t[x/u] = t for all u.

Proof.
Structural induction over t.

I t = y . Because x 6∈ y we have x 6= y , so y [x/u] = y .

I t = c . Trivial.

I t = t1t2. Then x 6∈ t1 and x 6∈ t2, so
(t1t2)[x/u] = t1[x/u]t2[x/u] = t1t2.

Lemma 7

Lemma
Let t be a term such that x 6∈ FV (t). Then σ = [x/t] is an unifier
of x = t.

Proof.
Lemma 6.

Lemma 8

Lemma
Assume that x 6∈ t. Let σ be any substitution, let τ be a
substitution such that xτ = x and yτ = yσ for y 6= x. Then
tσ = tτ .

Proof.
Structural induction over t.

I t = y . Because x 6∈ y we have x 6= y . So yσ = yτ by
definition of τ .

I t = c . Trivial.

I t = t1t2. Easy.

