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Abstract
Teaching precise mathematical reasoning can be very hard. It is very easy for a student to make
a subtle mistake in a proof which invalidates it, but it is often hard for the teacher to pinpoint
and explain the problem in the (often chaotically written) student’s proof.

We present Easyprove, an interactive proof assistant aimed at first year computer science
students and high school students, intended as a supplementary tool for teaching logical reasoning.
The system is a Web application with a natural, mouse-oriented user interface.
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1 Introduction

A logic course is an essential part of every computer science curriculum. Computer science
students in University of Wrocław take a mandatory course, called “Logic for Computer
Scientists”, during their first semester. The main goal of the course is to teach the students
the ability to perform precise mathematical reasoning – which is a very important skill for
theoreticians and practitioners alike. To achieve this goal, the students are given a number
of exercises which involve proving simple theorems, mostly in the domain of set theory.
The students are expected to provide informal proofs in natural language. The emphasis is
placed on logic as a tool for convincing yourself and others of the validity of mathematical
statements, and not on any particular logical formalism.

The students consider this course to be very hard. During the first few weeks, they
struggle to understand the structure of a mathematical proof. The teachers do their best
to guide them, but the time a teacher can give to an individual student is necessarily very
limited. Therefore there is a strong need for an educational tool to aid the learning process.
Such tool would serve as a playground, allowing the student to experiment freely with writing
mathematical proofs. It should preferably both constrain the student, so that only correct
proofs are accepted, and suggest him possible ways to continue the proof if he gets stuck.

There is a class of computer programs called proof assistants, which aid in formalizing
proofs of mathematical theorems; examples include Coq, HOL Light, Isabelle and Mizar.
These tools, while very useful for a specialist, are in our opinion too complex and quirky
to be used for teaching logic to freshmen. Some have adapted them for use in teaching
logic [5, 8, 4, 6]; we believe these tools are useful only for later stages of student’s education.
There also already exist a number of tools developed specifically as an aid for teaching logic,
such as Jape [2], Yoda [7] and Panda [3], but these tools focus mostly on teaching logic as
a formalism (natural deduction, sequent calculus, etc.), not as a method of reasoning, as
embodied by pen-and-paper proofs which can be found in mathematical journals.

We developed Easyprove as a supplementary teaching tool to be used in our logic course
for freshmen at the University of Wrocław; we believe it might also find use in high schools.
We briefly summarize our requirements in the next section.
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2 Design goals

In order to be most useful for teaching mathematical reasoning to freshmen, Easyprove was
designed with following goals in mind:

Easy to access. A good teaching tool should be easy to access for the student both during
classes and at home. Using contemporary IT technology, the best way to achieve this is
to design the tool as a web application. The Javascript engines of today’s Web browsers
allow to create Web interfaces which are just as usable as classical “desktop” ones. One can
also argue that young people are now very familiar with Web-like interfaces thanks to the
popularity of smartphones and tablets.
The approach of designing an educational tool as a Web app was successfully applied by
many other projects, including Yoda [7], BoxProvr [4] and ProofWeb [5].

Natural syntax. To use a full-featured proof assistant, the user has to learn a specialized
syntax used for representing terms, proofs and commands for the system. This can be a
big burden for a computer science freshman, who is not yet familiar with any programming
language or other formal syntax.
To remedy this problem, Easyprove presents proofs using a notation close to natural lan-
guage, and the terms are displayed using Unicode mathematical symbols, which are already
familiar to the student from mathematics classes. The symbols can be entered using a
graphical keyboard, LaTeX-like shorthands, or copied-and-pasted from other sources.

Familiar setting. Many proof assistants are based on complex formalisms, which can be
hard to understand to freshmen. For example, HOL and Coq use higher-order logics, and
it is typical to encode sets as predicates within the logic. This is often advantageous for an
expert user, but for a beginner it is causing many unexpected problems: e.g., simple terms
like {{a}} ∪ {a}, which the student encounters on mathematics classes, give a type error.
In contrast, Easyprove is based on first-order logic and (Zermelo-Fraenkel) set theory. First-
year students should already have some basic familiarity with them from mathematics
classes.

Discoverable user interface. Proof assistants have in general a very steep learning curve.
Some of them present a command prompt to the user, who is required to learn a big number
of commands or “tactics” in order to use them (e.g. Coq, HOL Light). Others work in batch
mode – the user has to write a proof script, which is then checked for correctness by the
tool (e.g. Mizar, Isabelle). There are GUI front-ends available, but these are of little help
for learning: they usually list all possible commands in menus, the commands are not well
described, and most of them are not applicable in a given context.
In contrast, Easyprove presents the user with applicable actions only, and their effects are
completely described. Also, every function of Easyprove is accessible by the graphical inter-
face, which can be used with only a mouse.

Features for classroom use. Easyprove is designed with features important for teachers
in mind: creating task lists, managing student accounts, storing students’ solutions on the
server for review and replay. It also supports internationalization: we have implemented
Polish and English front-end language versions.

In the next section we present how Easyprove meets these design goals by presenting
example interactions with the system.
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Figure 1 Term editor

3 Using Easyprove

To run Easyprove, one enters its URL in any Web browser with standard CSS and Javascript
support. One is then presented with a screen with a list of pre-entered tasks – theorems to
prove. One can also create a new task from scratch. To create a task, the user has to give it
a name, enter the goal formula, and select the set of assumptions (axioms or lemmas) which
will be available in the task.

3.1 Term editor
The goal is entered using a graphical term editor (Figure 1). The editor window has two
main parts: on the top is the visual keyboard, which presents available symbols and variable
names present in the current context; the currently entered term is displayed below it. In the
visual keyboard, each button has a tooltip which displays a short description and presents
how a given symbol can be entered using a keyboard.

The editor has two modes of operation: structural and linear. In the structural mode,
clicking a button on the visual keyboard fills the currently selected hole in the term, possibly
creating new holes for the subterms. When the user starts typing or clicks on a hole, the
editor switches to the linear mode. The visual keyboard can now be used to insert a symbol in
the current cursor position. Symbols can also be entered by typing a LaTeX-like shorthand,
e.g., typing \forall causes the symbol ∀ to appear. Pushing the Enter button parses the
entered term and switches the editor back to visual mode. If a mistake is made, clicking on
a subterm returns it to linear mode for editing.

3.2 Proof editor
The main part of Easyprove is the proof editor. The proof editor screen (Figure 2) consists
of the main block, the sidebar and the toolbar. The main block presents the proof in a form
resembling a pen-and-paper mathematical proof. The sidebar lists the current goals and the
assumptions applicable for the currently selected goal, which is highlighted. There can be
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Figure 2 Proof editor

many goals active, one for each branch of the proof created by case analysis or unproved
lemmas; the user is free to switch between them at any time. The toolbar contains the
undo/redo buttons and a “delete last step in this proof branch” button.

The formulas occurring in the proof text are of one of two kinds: they can be either a
goal or an assumption. The currently applicable assumptions are marked with a blue star 6;
the ones from other proof branches are marked with a gray star. Unproved goals are marked
with a red sad face /; when the goal is not active, but its proof branch is not yet proved
completely, the face turns yellow /. A proved goal is distinguished by a green happy face ,.
Every formula in the proof text is numbered, so that it can be referred to using this number
both in the proof text and in the sidebar.

Initially the proof has only one goal – the theorem one wants to prove – and no as-
sumptions (the assumptions selected when creating a task are implicit and are not shown
in the proof). To illustrate how one writes a proof in Easyprove, we use the classical barber
paradox as an example. In particular, we will prove that the existence of a barber which
shaves every person that does not shave himself is paradoxical. This can be stated in first
order logic as:1

¬∃A∀B(shaves(A,B)⇔ ¬shaves(B,B))

Interaction with the proof editor is inspired by proof by pointing [1]. Clicking on a subterm
of the goal (the subterm currently pointed at is highlighted) causes a menu window to
appear, which lists proof steps applicable to the selected subterm. In our example, clicking
on the whole term opens the window presented below:

The proof step titled “prove a lemma” is always available, and allows to introduce lemmas.
The next one, “prove by contradiction”, is also always available, and is the one we want to
use here. When the user hovers the mouse over a proposed proof step, a tooltip appears:

1 This sentence can be directly copied from this article’s PDF file and pasted into the term editor.
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The tooltip briefly summarizes how the proof will be extended if the user activates the
selected proof step. In this case, the negated goal will be added as an assumption, and the
new goal will be ⊥ – a contradiction.

Clicking on the new assumption will show a proof step named “take this”, which corres-
ponds to existential quantifier elimination. Selecting this step will add an assumption about
the variable A – which symbolizes the paradoxical barber:

The new assumption (4) is an universal sentence, so a proof step named “specialize” is
available for it. Choosing it invokes the term editor, which allows to enter the term used to
specialize the universal sentence. Here we intend to examine the case when the person B is
the barber A himself, so we choose A from the “Variables” tab (the sentence shown next to
the button is the first assumption mentioning this variable):

We get the obviously contradictory sentence shaves(A,A) ⇔ ¬shaves(A,A) (the proof
state at this point is shown in Figure 2). Contradiction can be derived from it either by
using a built-in lemma about equivalence, or by case analysis using the law of excluded
middle; we show below the completed proof using the first possibility:

3.3 Proving theorems in set theory

Easyprove was specifically designed for writing proofs of simple theorems in set theory. To
illustrate its features, we now briefly present a proof that for every set A, the sum of all its
subsets is equal to A; i.e. that

⋃
(P(A)) = A.

Set equality is usually proven using the extensionality principle, or equivalently by prov-
ing two inclusions. Both principles are available as lemmas in Easyprove, here we choose
the second one:

We get a goal which is a conjunction, so we use a proof step named “prove conjuncts”
to prove the conjuncts separately. We can then apply the definition of set inclusion to both
goals (the option to do so is present in the drop-down menus for the goals):
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Figure 3 Proof editor – proof in set theory

The proof can easily be completed in this way, by repeatedly applying proof steps from
logic and using set-theoretic definitions and lemmas. A partially completed proof of the
theorem in Easyprove is shown in Figure 3.

4 Implementation

Easyprove is mostly implemented using the programming language Java. The Google Web
Toolkit2 is used for the user interface, for communicating with the Easyprove server, and
for compiling Java code to Javascript, which can be executed in a browser. Most of the
Easyprove code, including the proof engine, runs on the client side, which reduces the load
placed on the server and allows easy scaling for large number of users. The Easyprove server,
which manages the task list and user accounts, is implemented in Scala3, and runs on any
Java Servlet container (e.g. Tomcat, Jetty).

The proofs are represented internally as trees, with nodes corresponding to each proof
step used by the user. The nodes may be one of two kinds: they may represent forward
reasoning steps, which add new assumptions, but do not change the goal; or they can
change the current goal or add new goals. Either way, discarding assumptions (weakening)
is prohibited – an introduced assumption is valid for its entire proof branch. This corresponds
to the way assumptions are usually treated in pen-and-paper proofs.

The new formulas introduced by proof steps (assumptions or goals) are automatically
simplified according to the following rules:

2 http://www.gwtproject.org
3 http://www.scala-lang.org

http://www.gwtproject.org
http://www.scala-lang.org
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Expressions with binary logical operators
Truth > and falsity ⊥ symbols are propagated (e.g. φ ∨ > becomes >) or eliminated
(φ ∧ > becomes φ) if possible; ∨ and ∧ are reassociated to the left;
Negations are pushed inwards using the de Morgan’s laws, double negations are elimin-
ated.

The justification is that a mathematician writing a proof is not concerned with the particular
shape of the formulas he is working with, but with their meaning.

Assumptions applicable to a clicked subterm on some goal or assumption (see Section 3.3)
are found using pattern matching. For example, the definition of set inclusion is stored in
Easyprove as:

∀A∀B(A ⊆ B ⇔ ∀x(x ∈ A⇒ x ∈ B))

The system finds this assumption to be applicable to the goal
⋃

(P(A)) ⊆ A by matching
it to the pattern A ⊆ B, where A and B are considered pattern variables. To make the
search for matching assumptions efficient when the number of them is large, the patterns
are stored in a prefix tree (trie) structure, where the keys are pre-order representations of
the patterns – e.g. A ⊆ B is stored in the prefix tree as “⊆, A,B”.

5 Conclusions and future work

We have implemented Easyprove, an easy to use proof assistant, as an aid for teaching
logical reasoning. It is targeted for first year computer science students and high school
students. The system is currently in prototype stage and requires further work in order to
be fully usable. The goals for future development are:

Other axiom systems. Easyprove can be in principle extended to handle axiomatic systems
other than set theory – for example, Hilbert’s axioms for Euclidean geometry. Such an
extension would enhance the educational utility of the tool.

Better proof editor. The proof editor does not currently allow easy modification of the
proof: the only way to restructure an already entered part of the proof is to undo the most
recent proof step in a proof branch. A user interface for restructuring a proof would aid
active experimentation, and therefore improve the learning experience.

More use of natural language. Easyprove currently presents formulas in symbolic form.
Adding an option to present them in natural language instead (e.g. instead of ∀x shaves(x, y)
write “for all x, x shaves y”) would help the student make the connection between what he
sees on screen and actual pen-and-paper mathematical proofs.

Proof automation. The main priority in Easyprove’s design was handling short proofs of
simple theorems well, because these are most instructive for teaching logical reasoning. Be-
cause of this decision, writing longer proofs in Easyprove is tedious. It remains to be explored
how one can include automation in Easyprove without hurting its didactic character.

Mobile interface. Easyprove was designed with a traditional keyboard and mouse in mind.
Given the recent popularity of touch screen devices, a redesign of the user interface to
accommodate them would certainly allow Easyprove to reach a wider audience.

Nevertheless, the system has proven to be usable in its current state. It was not used in the
classroom yet, but it was presented to selected students and their response was positive.
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