
Higher-Order and Symbolic Computation manuscript No.
(will be inserted by the editor)

Subtyping Delimited Continuations

Marek Materzok · Dariusz Biernacki

the date of receipt and acceptance should be inserted later

Abstract We present a type system with subtyping for first-class delimited continua-

tions that generalizes Danvy and Filinski’s type system for shift and reset by maintain-

ing explicit information about the types of contexts in the metacontext. We exploit

this generalization by considering the control operators known as shift0 and reset0 that

can access contexts arbitrarily deep in the metacontext. We use subtyping to control

the level of information about the metacontext the expression actually requires and in

particular to coerce pure expressions into effectful ones. For this type system we prove

strong type soundness and termination of evaluation and we present a provably cor-

rect type reconstruction algorithm. We also introduce two CPS translations for shift0
and reset0: one targeting the untyped lambda calculus, and another—type-directed—

targeting the simply typed lambda calculus. The latter translation preserves typability

and is selective in that it leaves pure expressions in direct style.

Keywords delimited continuation, continuation-passing style, type system, subtyping

1 Introduction

1.1 Delimited-control operators shift and reset

Control operators for first-class delimited continuations, introduced independently by

Felleisen [17] and by Danvy and Filinski [13,14], serve to abstract control in func-

tional programming languages by reifying the current continuation as a first-class

value. However, in contrast to the well-known abortive control operator callcc present
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in Scheme [24] and SML/NJ [21], delimited-control operators model composition of

delimited (composable, partial) continuations rather than jumps to undelimited con-

tinuations. In particular, while callcc offers the programmer the full power of the

continuation-passing style (CPS) in direct style (DS), Danvy and Filinski’s shift and re-

set make it possible to express the continuation-composing style (CCS) patterns in DS

that are characteristic of the success-failure continuation model of backtracking [14].

It has been shown by Filinski that shift and reset play an important role among

the most fundamental concepts in the landscape of eager functional programming—a

language equipped with shift and reset is monadically complete, i.e., any computational

monad can be represented in direct style with the aid of these control operators [19,20].

A long list of non-trivial applications of delimited continuations includes normalization

by evaluation and partial evaluation [3,12,15], mobile computing [38], linguistics [4],

and operating systems [26] to name but a few.

The presence of a control delimiter, such as reset, in a programming language is re-

flected in the structure of the continuation that represents the rest of the computation

at a given point of program execution. Namely, the continuation is split into the cur-

rent delimited continuation that extends up to the nearest dynamically enclosing reset,

and a metacontinuation that represents the rest of the program beyond this delimiter.

Originally, the semantics of shift and reset was given in terms of a metacontinuation-

passing evaluator [14]. Defunctionalizing this evaluator led Biernacka et al. to an ab-

stract machine that operates on first-order representations of the continuation and

metacontinuation that are called a context and a metacontext, respectively [7]. It is

convenient to view the two layers of contexts as stacks, where the context is a stack of

elementary contexts [18], and the metacontext is a stack of contexts.

Then, the operational semantics of the control operators shift (S) and reset (〈〉) can

be explained in terms of the abstract machine as follows. Evaluation of the expression

Sk.e consists in:

1. binding the variable k to the current delimited context;

2. evaluating the expression e in the empty delimited context and with the newly

created binding for k.

Resuming a captured context consists in:

1. pushing the current delimited context on top of the metacontext;

2. installing the captured context as the current delimited context.

Evaluation of the expression 〈e〉 consists in:

1. pushing the current delimited context on top of the metacontext;

2. evaluating the expression e in the empty delimited context.

When a value has been computed and the current delimited context is empty, the

metacontext is popped and the top-most context becomes the current delimited context

for the computed value.

For example, the following expression (where ++ is string concatenation):

“Alice” ++ 〈“ has ” ++ (Sk.(k “a dog ”) ++ “and the dog” ++ (k “a cat.”))〉

evaluates to the string “Alice has a dog and the dog has a cat.” Here, the captured

context represents the expression 〈“ has ” ++ [ ]〉, where the hole [ ] is filled with

“a dog ” and “a cat.”, upon the two applications of the captured continuation.
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The CPS structure underlying shift and reset induces a type-and-effect system due

to Danvy and Filinski that is the most expressive of the known monomorphic type

systems for shift and reset [13]. Judgments in Danvy and Filinski’s type system have

the form Γ ;B ` e : A;C, with the interpretation that expression e can be plugged

into a context expecting a value of type A and producing a value of type B, and

a metacontext expecting a value of type C, where B and C can be different types.

Hence, expressions are allowed to change the answer type of the context in which they

are embedded. For example, the expression 〈1 + Sk. true〉 is well typed in this type

system.

1.2 From shift to shift0

In their pioneering article on delimited continuations [13], Danvy and Filinski briefly

described a variant of shift and reset, known as shift0 (S0) and reset0 (also noted 〈〉).
The operational semantics of the control delimiter reset0 coincides with that of reset.

However, evaluation of the expression S0k.e differs from evaluation of the expression

Sk.e in that the expression e is not evaluated in the empty delimited context, but in the

top-most delimited context pending on the metacontext. In other words, in contrast to

shift, shift0 removes the control delimiter along with the captured context, which makes

it possible to use shift0 to access delimited contexts arbitrarily deep in the metacontext

by repeatedly shifting contexts.

For example, the following expression:

〈“Alice” ++ 〈“ has ” ++ (S0k1.S0k2.“A cat” ++ (k1(k2 “.”)))〉〉

evaluates to the string “A cat has Alice.”. Here, k1 is bound to a context represent-

ing the expression 〈“ has ” ++ [ ]〉, and k2 is bound to the context representing the

expression 〈“Alice” ++ [ ]〉.
The ability to access delimited contexts arbitrarily deep in the metacontext makes

shift0 a particularly interesting and powerful control operator. Surprisingly, compared

to shift, it has not received much attention in the literature so far.

In the untyped setting, shift0 and reset0 have been investigated by Shan [37], who

presented a CPS translation for shift0 and reset0 that conservatively extends Plotkin’s

call-by-value CPS translation [33] and that leads to a simulation of shift0 and reset0 in

terms of shift and reset. This CPS translation and simulation hinge on the requirement

that the continuations be represented by recursive functions taking a list of continua-

tions as one of their arguments. (The converse simulation is trivial—one simply resets

the body of each shift0 expression.)

In a typed setting, Kiselyov and Shan [27] introduced a substructural type system

for shift0 and reset0 that abstractly interprets (in the sense of abstract interpretation

of Cousot and Cousot [11]) small-step reduction semantics of the language. Their type

system allows for continuation answer type modifications and, in a sense, extends

Danvy and Filinski’s type system.

1.3 Contributions of this work

In this article we present a new type-and-effect system for shift0 and reset0 that gen-

eralizes Danvy and Filinski’s original type system for shift and reset. To this end, we
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first introduce two new CPS translations for shift0 and reset0: a curried one that con-

servatively extends Plotkin’s call-by-value CPS translation and an uncurried one that

requires list structure and list operations in the target language. From the uncurried

CPS translation, we derive a new abstract machine that along with the standard re-

duction semantics forms an operational foundation for shift0. From the curried CPS

translation, we derive a type-and-effect system à la Danvy and Filinski which we refine

by allowing for subtyping of types and effect annotations. We show that the type sys-

tem with subtyping we present satisfies several crucial properties such as strong type

soundness [39] and termination of evaluation, and we describe and prove correct a type

inference algorithm for this type system.

Compared to Kiselyov and Shan’s type system [27], the one presented here is more

conventional; it corresponds directly to the CPS translation it has been obtained from,

and it heavily relies on subtyping built into the system. Furthermore, we take advantage

of the fact that our type system distinguishes between pure and effectful expressions

and we present a selective type-directed CPS translation from the language with shift0
and reset0 to the simply typed lambda calculus that transforms to CPS only effectful

expressions, leaving pure ones in direct style.

We also show that Danvy and Filinski’s original type system for shift and reset

can naturally be embedded into our type system, and that when restricted, our type

system gives rise to a type system à la Danvy and Filinski with subtyping for shift

and reset. Similarly, the untyped CPS translation for shift0 and reset0 that we present

induces a new CPS translation for shift and reset and a new simulation of shift0 and

reset0 in terms of shift and reset.

It is worth stressing that the subtyping mechanism of our type system addresses

one of the subtle limitations of Danvy and Filinski’s type system concerning the typing

rules for shift and λ-abstraction:

Γ, f : A F −→ FB;E ` e : E;C

Γ ;B ` Sf.e : A;C

Γ, x : A;C ` e : B;D

Γ ;E ` λx.e : AC −→DB;E

According to the above rule for shift, the type system assigns the captured continu-

ation a functional type with a single, chosen up-front answer type (F ), which prevents

it from being resumed in contexts with a different answer type. But the continuations

captured by shift do not modify the context of their resumption, and therefore they

should be applicable in any context. One way to deal with this shortcoming is to in-

troduce polymorphism into the language, as in Asai and Kameyama’s work [2]. In

their type system, the continuation captured by shift is assigned a functional type with

polymorphic answer type. Another approach is to distinguish between continuations

and functions in such a way that a captured continuation is given a type which does

not mention the answer type [6]. In this approach, additional syntactic construct—a

continuation application, distinct from function application—has to be added to the

language. Unfortunately, in this type system, functions without control effects (when

C and D are the same arbitrary type in the rule for λ-abstraction) still have an answer

type chosen up-front and are subject to the same restrictions as described above.

In a way, one can treat the continuation types studied by Biernacka and Bier-

nacki [6] as more general than function types—continuations can be applied in any

context, whereas functions can only be applied in contexts with matching answer types.
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The type system of this article removes the syntactic distinction between continuations

and functions by means of subtyping effect annotations. The subtyping relation allows

functions to be called when more is known about the types of the contexts in the

metacontext than the function actually requires. In particular, a pure function, possi-

bly representing a captured continuation, can be arbitrarily coerced into an effectful

one.

1.4 Outline of the rest of the article

The rest of this article is structured as follows. In Section 2, we introduce the syntax

and reduction semantics for the call-by-value λ-calculus with shift0 and reset0. We then

present two CPS translations for the language and we relate them to the reduction

semantics. We also present an abstract machine corresponding to the uncurried CPS

translation. Next, we derive a type-and-effect system à la Danvy and Filinski from the

curried CPS translation. In Section 3, we introduce subtyping to the type system and

we prove several standard properties for the system, including strong type soundness.

Then, we use a context-based method of reducibility predicates to prove termination of

evaluation of well-typed programs. We subsequently present and prove correct a type

inference algorithm for our type system. Finally, we present a selective type-directed

CPS translation for the language. In Section 4, we consider some practical applications

of the presented language. In Section 5, we show how the type system for shift0 and

reset0 can be restricted to Danvy and Filinski’s type system for shift and reset, and

we discuss the CPS translations for shift and reset induced by the presented CPS

translations for shift0 and reset0. We also describe a new static simulation of shift0 in

terms of shift. In Section 6, we discuss related work and we conclude in Section 7.

Most of the theorems presented in this paper were formalized in the Twelf sys-

tem [32]. The only exception is the normalization theorem that hinges on the concept

of logical relation that is not supported by Twelf.

2 The language λS0

2.1 Syntax and semantics

In this section, we define the language we will be working with. The language, which

we call λS0 , is the call-by-value λ-calculus extended with the two control operators

shift0 (S0) and reset0 (〈〉̇).
We introduce three syntactic categories of terms, evaluation contexts and trails

(i.e., stacks of evaluation contexts that form a particular prefix of the metacontext, as

defined later in this section), where term variables are ranged over by x and f :

values v ::= λx.e | x
terms e ::= v | e e | 〈e〉 | S0f.e
contexts K ::= • |K e | v K
trails T ::= � |K · T

We use the notation T · T ′ for trail concatenation, defined as follows:
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� · T = T (K · T ) · T ′ = K · (T · T ′)

Contexts and trails are represented inside-out, which is formalized by the following

definition of the plugging of a term into a context and a trail:

•[e] = e �[e] = e

(K e′)[e] = K[e e′] (K · T )[e] = T [〈K[e]〉]
(v K)[e] = K[v e]

There are three contraction rules:

(λx.e)v  e{v/x}
〈v〉  v

〈K[S0f.e]〉  e{λx.〈K[x]〉/f}

where e{v/x} stands for the usual capture-avoiding substitution of v for x in e. A term

matching the left-hand side of a contraction rule is called a redex.

The reduction rule for shift0 differs from the following rule for shift:

〈K[Sf.e]〉 〈e{λx.〈K[x]〉/f}〉

in that it removes the reset0 at the root of the redex. This small difference enables the

shift0 operator to inspect the entire context stack, where shift has access only to the

topmost context. In Section 4.3, we exhibit an interesting programming example that

takes advantage of this difference in practice. Furthermore, it has a big impact on the

type systems that we present later in the article.

The unique decomposition lemma is stated as follows:

Lemma 1 (Unique decomposition) Any closed λS0 term either is a value, or it is

a stuck term of the form K[S0f.e], or it can be uniquely represented as K[T [e]], where

e is a redex.

Finally, we define the reduction relation on terms representing programs as follows:

K[T [e]]−→K[T [e′]] if e e′

The context K (at the bottom of the stack) is the only one not delimited by a reset0. As

we shall see later, having this last context distinguished from the others is important

from the viewpoint of the type system, because it can be assigned a simpler type

than the other contexts. A trail T along with the distinguished evaluation context K

will be called a metacontext in the rest of this article. Notice that in this approach the

current delimited context is the top-most element of the metacontext, and therefore the

meaning of the metacontext here is slightly different from the standard one, introduced

for shift and reset [7].
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JxK = λk.k x

Jλx.eK = λk.k (λx.JeK)
Je1e2K = λk.Je1K(λf.Je2K(λx.f x k))

J〈e〉K = JeK(λx.λk.k x)

JS0f.eK = λf.JeK

Fig. 1 Untyped CPS translation for λS0

JxK@ = λl(k : ks).k x@ ks

Jλx.eK@ = λl(k : ks).k (λx.JeK@) @ ks

Je1e2K@ = λl(k : ks).Je1K@ @ ((λf.λlks′.Je2K@ @ ((λx.λlks′′.f x@ (k : ks′′)) : ks′)) : ks)

J〈e〉K@ = λl(k : ks).JeK@ @ ((λx.λl(k′ : ks′).k′ x@ ks′) : k : ks)

JS0f.eK@ = λl(f : k : ks).JeK@ @ (k : ks)

Fig. 2 Untyped uncurried CPS translation for λS0

2.2 CPS translations

The shift0 control operator allows access to every context in the trail. What is more,

unlike with shift and reset whose CPS translation reads as follows [14]:

JSf.eK = λk.JeK{λx.λk′.k′(k x)/f}(λx.x)

J〈e〉K = λk.k(JeK(λx.x))

control effects in a captured context are not isolated—the captured context, when ap-

plied, can capture contexts present at the invocation site. This ability must be reflected

in the CPS translation for the shift0 operator. In the translation presented by Shan [37],

the trail is represented explicitly as a list of contexts which has to be passed to every

continuation. In our approach, the contexts below the current one are captured by ad-

ditional lambda abstractions. The translation for the shift0 operator captures a context

using a lambda abstraction, and the translation for reset0 introduces a new context

represented by the CPS-translated identity continuation. Hence, just like in Shan’s

work, our CPS accounting for shift0 relies on continuations accepting continuations

as parameters. The entire CPS translation is shown in Figure 1. Evaluating a CPS-

translated program requires an initial continuation λx.x. The translation preserves the

semantics:

Theorem 1 If e1−→ ∗e2 in λS0 , then Je1K =βη Je2K in λ.

We note the striking simplicity of the translation and the fact that the control

operator shift0 is trivially turned into a lambda abstraction, expecting a continuation

as an argument. This CPS translation can be modified so that every translated term

takes all its continuation parameters in one list parameter. Figure 2 presents such an

uncurried CPS translation that targets the untyped lambda-calculus extended with a

separate syntactic category of lists (with the standard list constructors [ ] and :) and two

new kinds of expressions: list abstraction λl and list application @. Evaluating a CPS-

translated program requires a list whose only element is the continuation λx.λl[ ].x.
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Environments: ρ ::= ρinit | ρ[x 7→ v]

Values: v ::= [x, e, ρ] | E
Contexts: E ::= End | Arg(e, ρ, E) | Fun(v,E)

Metacontexts: F ::= � | E : F

Initial configurations: 〈e, ρinit,End : �〉eval
Final configurations: 〈End, v,�〉cont

〈x, ρ, E : F 〉eval ⇒ 〈E, ρ(x), F 〉cont
〈λx.e, ρ, E : F 〉eval ⇒ 〈E, [x, e, ρ], F 〉cont
〈e1e2, ρ, E : F 〉eval ⇒ 〈e1, ρ,Arg(e2, ρ, E) : F 〉eval

〈S0f.e, ρ, E : E′ : F 〉eval ⇒ 〈e, ρ[f 7→ E], E′ : F 〉eval
〈〈e〉, ρ, E : F 〉eval ⇒ 〈e, ρ,End : E : F 〉eval
〈End, v, E : F 〉cont ⇒ 〈E, v, F 〉cont

〈Arg(e, ρ, E), v, F 〉cont ⇒ 〈e, ρ,Fun(v,E) : F 〉eval
〈Fun(E,E′), v, F 〉cont ⇒ 〈E, v,E′ : F 〉cont

〈Fun([x, e, ρ], E), v, F 〉cont ⇒ 〈e, ρ[x 7→ v], E : F 〉eval

Fig. 3 Abstract machine for λS0

2.3 Abstract machine

The uncurried CPS translation of the previous section underlies a continuation-passing

style evaluator that, when defunctionalized [34,1], gives rise to the abstract machine of

Figure 3. This abstract machine extends Felleisen and Friedman’s CEK abstract ma-

chine [18] and can be seen to be equivalent with the abstract machine for shift0/reset0
described by Biernacki et al. [10]. (An alternative way to obtain an abstract machine

for the language we consider would be to follow Biernacka and Danvy’s syntactic corre-

spondence between context-based reduction semantics with explicit substitutions and

abstract machines [8,9].) Had we decided to translate terms in such a way that the

head and tail of the continuation list are passed as separate arguments, we would have

obtained a CPS translation that coincides with Shan’s [37] and which corresponds ex-

actly to the abstract machine of Biernacki et al. [10]. (The intuitive semantics of shift0
presented in Section 1 is actually phrased in terms of such an abstract machine.)

The abstract machine makes use of the environment mapping variables to values

(closures and captured contexts) and it implements the eval/continue model, where the

transitions from the eval-configurations interpret the expressions of the language and

the transitions from the cont-configurations interpret the stack of the abstract machine.

The contexts E are the standard call-by-value evaluation contexts represented as stacks

of elementary evaluation contexts. The metacontexts F are stacks of contexts.

Notice that the transition for shift0 requires the rest of the metacontext below

the current delimited context to be non-empty. This requirement coincides with the

observation of Section 2.1 that the context at the bottom of the metacontext has a

special status, in particular it is not allowed to be captured. For this reason, in the

grammar of contexts we could actually replace the empty context End with two such

contexts Stop and Pop. Then Stop would be used only as a termination mark of the

bottom-most context, namely in the initial and final configurations when the tail of

the metacontext is always empty, whereas Pop would be introduced and eliminated
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Γ, x : τ ` x : τ [τ ′ σ] τ ′ σ
var

Γ, x : τ1 ` e : τ2 σ

Γ ` λx.e : τ1
σ−→ τ2 [τ σ′] τ σ′

abs

Γ ` e1 : τ1
[τ′1 σ1] τ′3 σ3−−−−−−−−→ τ2 [τ ′4 σ4] τ ′2 σ2 Γ ` e2 : τ1 [τ ′3 σ3] τ ′4 σ4

Γ ` e1e2 : τ2 [τ ′1 σ1] τ ′2 σ2
app

Γ, f : τ1
σ1−−→ τ2 ` e : τ3 σ2

Γ ` S0f.e : τ1 [τ2 σ1] τ3 σ2
shift0

Γ ` e : τ ′ [τ ′ [τ ′′ σ′′] τ ′′ σ′′] τ σ

Γ ` 〈e〉 : τ σ
reset0

Fig. 4 Type system for λS0 without subtyping

in the transitions for reset0 and End, respectively, when the tail of the metacontext is

never empty. Indeed, in the uncurried CPS translation there are two different ‘initial’

continuations: one in the clause for reset0, corresponding to Pop and one at the top

level, corresponding to Stop.

2.4 From CPS translation to a type system

Using the approach of Danvy and Filinski [13], we build a type system based on the

curried CPS translation. Let us thus limit our attention to those terms of λS0 , whose

translations are well-typed terms in λ→. One can then easily see that the types for

variables, lambda abstractions and application must have the same form as in the type

system of Danvy and Filinski. And what types should we assign to shift0 and reset0?

Suppose that JeK has type τ , then JS0f.eK = λf.JeK must have the type τ ′−→ τ , where

τ ′ is the type of the captured continuation. For reset0, for J〈e〉K = JeK (λx.λk.kx) to

have type τ , JeK has to have a type of the form (τ ′−→ (τ ′−→ τ ′′)−→ τ ′′)−→ τ . Thus every

use of shift0 introduces a new function arrow into the type, and every use of reset0
removes one. This leads us to a recursive definition of effect annotations, which in a

sense “remembers” the number of nested uses of shift0 inside a term.

We now introduce the syntactic categories of types and effect annotations, where

α ranges over type variables and ε stands for the empty annotation:

types τ ::= α | τ σ−→ τ

annotations σ ::= ε | [τ σ] τ σ

The resulting type system for λS0 is shown in Figure 4. We introduce a typing judgment

of the form Γ ` e : τ σ, which means that e evaluates to a value of type τ , possibly

executing control effects described by the type annotation σ. The type environment Γ

associates a pure type τ (without any annotation) with every variable mentioned.

The type annotations require some explanation. Their meaning is best understood

together with types they annotate. The typing judgment Γ ` e : τ ′1[τ1σ1] . . . τ ′n[τnσn]τε

can be read as follows: “the term e in a typing context Γ may evaluate to a value of type

τ when plugged in a trail of contexts of types τ ′1
σ1−→ τ1, . . . , τ

′
n

σn−−→ τn.” As a special

case, Γ ` e : τ means: “the term e in a typing context Γ may evaluate to a value of

type τ without observable control effects.” Function types also have effect annotations,

which can be thought of as associated with the return type.
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In order to see the difference with shift and reset, we rephrase the original typing

rules for these control operators using the notation of the type system for shift0 and

reset0:

Γ, f : τ1
[τ′ ε] τ′ ε−−−−−−→ τ2 ` e : τ [τ ε] τ3 ε

Γ ` Sf.e : τ1 [τ2 ε] τ3 ε
shift

Γ ` e : τ ′′ [τ ′′ ε] τ ε

Γ ` 〈e〉 : τ [τ ′ ε] τ ′ ε
reset

For brevity and improved readability, we omit the empty annotations ε in the rest

of the paper. For example, we will write the type τ1 [τ2 ε] τ3 ε from the rules above as

τ1 [τ2] τ3. This introduces no syntactic ambiguity.

This type system preserves types as stated in Theorem 2 below, where translations

on types and annotated types are defined as follows:

JαK = α

Jτ1 σ−→ τ2K = Jτ1K−→ Jτ2 σK

Jτ εK = JτK

Jτ [τ1 σ1] τ2 σ2K = (JτK−→ Jτ1 σ1K)−→ Jτ2 σ2K

Theorem 2 If Γ ` e : τ σ, then JΓ K ` JeK : Jτ σK in λ→.

While interesting, this type system is very restrictive. For example, the term

λx.S0f.f 〈f x〉

is translated (with administrative redexes reduced away for clarity) to

λk.k (λx.λf.λk.f x (λy.λk′.k′ y) (λy.f y k))

In this term, the two occurrences of f constrain its type to the form τ1 → τ2 → τf ,

where τf = (τ1 → τf ) → τ3—so the term cannot be given a type in the simply typed

lambda calculus. The reason is that the type of functions restricts their use to only

those locations in a term, where the number and types of contexts match exactly.

This is an unnecessary restriction—a function which requires the top n contexts to

be of some type can obviously be run safely when more contexts are present, if the

other contexts can be composed together and accept the function’s return value. This

observation leads us to another, much more expressive type system, which we present

in the next section.

3 The type system with subtyping

3.1 The type system λS0≤

The type system with subtyping for λS0 , called λS0≤ , is shown in Figure 5. In this type

system, the term λx.S0f.f 〈f x〉, which could not be typed before, is well typed and

can be assigned the type α [α] α−−−→α:
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ε ≤ ε
s-eps

τ σ ≤ τ ′ σ′

ε ≤ [τ σ] τ ′ σ′
s-pure

τ2 σ2 ≤ τ1 σ1 τ ′1 σ
′
1 ≤ τ ′2 σ′2

[τ1 σ1] τ ′1 σ
′
1 ≤ [τ2 σ2] τ ′2 σ

′
2

s-npure

τ ≤ τ ′ σ ≤ σ′

τ σ ≤ τ ′ σ′
s-str

α ≤ α
s-var

τ ′2 ≤ τ ′1 τ1 σ1 ≤ τ2 σ2
τ ′1

σ1−−→ τ1 ≤ τ ′2
σ2−−→ τ2

s-fun

Γ, x : τ ` x : τ
var

Γ ` e : τ σ τ σ ≤ τ ′ σ′

Γ ` e : τ ′ σ′
sub

Γ, x : τ1 ` e : τ2 σ

Γ ` λx.e : τ1
σ−→ τ2

abs
Γ ` e1 : τ1−→ τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2
app-pure

Γ ` e1 : τ1
[τ′1 σ1] τ′3 σ3−−−−−−−−→ τ2 [τ ′4 σ4] τ ′2 σ2 Γ ` e2 : τ1 [τ ′3 σ3] τ ′4 σ4

Γ ` e1e2 : τ2 [τ ′1 σ1] τ ′2 σ2
app

Γ, f : τ1
σ1−−→ τ2 ` e : τ3 σ2

Γ ` S0f.e : τ1 [τ2 σ1] τ3 σ2
shift0

Γ ` e : τ ′ [τ ′] τ σ

Γ ` 〈e〉 : τ σ
reset0

Fig. 5 Type system for λS0 with subtyping (λS0≤ )

var
Γ ` f : α−→α

var
Γ ` f : α−→α

var
Γ ` x : α

app
Γ ` f x : α

· · ·
α ≤ α [α] α

sub
Γ ` f x : α [α] α

reset0
Γ ` 〈f x〉 : α

app
Γ = x : α, f : α−→α ` f 〈f x〉 : α

shift0
x : α ` S0f.f 〈f x〉 : α [α] α

abs
` λx.S0f.f 〈f x〉 : α [α] α−−−→α

We define three subtyping relations: one defined on types, one on effect annotations,

and (for convenience) one on pairs of types and effect annotations.

Lemma 2 The subtyping relations are partial orders—they are reflexive, transitive and

weakly antisymmetric.

All subtyping rules are rather straightforward, except the rule s-pure, which may

seem non-intuitive. To get some understanding of what this rule means, let us consider

an effect-annotated type where the contexts are effect-free (type annotations inside

the square brackets are equal to ε and are thus omitted): τ1 [τ ′1] . . . τn [τ ′n] τf . This

effect-annotated type means that we have n evaluation contexts on the trail with types

τ1−→ τ ′1, . . . , τn−→ τ ′n, and the final answer type is τf . For a pure τ to be a subtype of

this type, the derivation of the subtyping needs to look like this:
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· · ·
τ ≤ τ1

· · ·
τ ′n−1 ≤ τn

· · ·
τ ′n ≤ τf

s-eps
ε ≤ ε

s-str
τ ′n ≤ τf

s-pure
ε ≤ [τ ′n] τf

s-str
τ ′n−1 ≤ τn [τ ′n] τf

· · ·
τ ′1 ≤ τ2 [τ ′2] τ3 . . . τn [τ ′n] τf

s-pure
ε ≤ [τ ′1] τ2 . . . τn [τ ′n] τf

s-str
τ ≤ τ1 [τ ′1] τ2 . . . τn [τ ′n] τf

So, it is required that τ ≤ τ1, τ ′k ≤ τk+1 for all k, and τ ′n ≤ τf ; in other words,

that a value of type τ can be passed to the first context, the contexts can be composed

together, and the result of the final context can be used as the final answer.

One can also define the subtyping relations by first defining the successor rela-

tions ≺ for types, effect annotations and annotated types as the smallest congruences

containing ε ≺ [τ σ] τ σ for every τ and σ.

Theorem 3 The reflexive and transitive closure of the successor relation ≺ is the

subtyping relation ≤.

The type system has two distinct rules for function application: one for pure expres-

sions (i.e., those without control effects), and one for impure expressions. The rule for

pure application seems not strictly necessary, but its removal reduces the expressiveness

of the type system—for example, the following term

(λf.λy.(λz.〈(λv.λw.y) (f y)〉) 〈f y〉) (λx.(λx.x)x)

can no longer be typed without this rule. The reason is that the function application

inside the subterm λx.(λx.x)x would then force it into “impure” typing, which makes

the typing fail in the left part of the term because of answer type incompatibility. Some

other terms would still be typeable, but the set of possible types would be smaller. For

example, the program presented in the beginning of this section can be typed without

the pure application rule, but with a different, more complicated type: α [α] α [β] β−−−−−−→α

instead of α [α] α−−−→α.

The type system satisfies the expected key properties such as subject reduction,

progress and unique decomposition, which is demonstrated next.

Theorem 4 (Subject reduction) If ` e : τ σ and e→ e′ for some e′, then ` e′ : τ σ.

Proof We prove the theorem for  and then the thesis for → follows by trivial induc-

tion. Using induction on the derivation of the typing judgment, we can assume that it

does not have the subtyping rule sub at the root and we proceed by case analysis. The

proofs of the cases require using the subtyping relation in a nontrivial way, and are an

instructional demonstration on how subtyping works in the language.

We have several cases to consider:

– 〈v〉  v. Then for some type τ ′ we have ` v : τ ′ [τ ′] τ σ. Because v is a value, we

have ` v : τ ′ and ε ≤ [τ ′] τ σ, which implies τ ′ ≤ τ σ. Thus we get ` v : τ σ.

– (λx.e) v  e{v/x} and σ = ε. Suppose that ` v : τ ′. We have x : τ ′′ ` e : τ ′′′,
τ ′ ≤ τ ′′ and τ ′′′ ≤ τ . We get ` v : τ ′′, and ` e{v/x} : τ follows from a standard

substitution lemma (that we omit).
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– (λx.e) v  e{v/x} and σ = [τ4 σ4] τ1 σ1. Suppose that ` v : τ ′ [τ3 σ3] τ2 σ2 and

` λx.e : τ ′ [τ4 σ4] τ3 σ3−−−−−−−−→ τ [τ2 σ2] τ1 σ1. Because v is a value, we have ` v : τ ′ and

τ3 σ3 ≤ τ2 σ2. Because λx.e is a value, we have ` λx.e : τ ′ [τ4 σ4] τ3 σ3−−−−−−−−→ τ and

τ2 σ2 ≤ τ1 σ1; by transitivity, τ3 σ3 ≤ τ1 σ1 follows. We also have x : τ ′′ ` e : τ ′′′ σ′,
τ ′ ≤ τ ′′, τ ′′′ σ′ ≤ τ [τ4 σ4] τ3 σ3. By transitivity we get τ ′′′ σ′ ≤ τ [τ4 σ4] τ1 σ1. We

get ` v : τ ′′, and ` e{v/x} : τ [τ4 σ4] τ1 σ1 follows from the substitution lemma.

– 〈K[S0f.e]〉 e{λx.〈K[x]〉/f}. Then for some type τ ′ we have ` K[S0f.e] : τ ′[τ ′]τσ.

So (by induction on K) we have ` S0f.e : τ ′′ [τ ′′′σ′′′]τ σ (and thus f : τ ′′ σ
′′′
−−→ τ ′′′ `

e : τ σ) and x : τ ′′ ` K[x] : τ ′ [τ ′] τ ′′′ σ′′′. Then ` λx.〈K[x]〉 : τ ′′ σ
′′′
−−→ τ ′′′, so using

the substitution lemma we get ` e{λx.〈K[x]〉/f} : τ σ.

Theorem 5 (Progress) If ` e : τ σ, then e is a value, e−→ e′ for some e′, or e =

K[S0f.e]. If σ = ε, the third case cannot occur.

3.2 Typing contexts and trails

Even though it is not strictly necessary, it is useful to have separate typing rules for

contexts and trails as a proof device and for improving the understanding of the system.

We first have to introduce a different way of looking at the types of expressions. In

the type system shown in Figure 5, we put emphasis on the argument type of the first

context on the trail (or of the bottom context, if the trail is empty). In the current,

alternative approach, the final answer type will be emphasized.

Let us introduce the syntactic category of trail types (which are just sequences of

function types):

π ::= (τ σ−→ τ)∗

We use ι to denote the empty trail type, and we use juxtaposition for trail type con-

catenation.

We define three functions: −→τ σ, which extracts the trail type, ↓(τ σ) which extracts

the answer type, and the composition π (τ σ), which appends a trail type to an effect-

annotated type. These functions are defined as follows:

−→τ = ι
−−−−−−−−−→
τ ′1 [τ1 σ1] τ σ = (τ ′1

σ1−→ τ1)−→τσ

↓τ = τ

↓(τ ′1 [τ1 σ1] τ σ) = ↓(τ σ)

ι (τ σ) = τ σ

π (τ ′1
σ1−→ τ1) (τ σ) = π (τ ′1 [τ1 σ1] τ σ)

We will omit the parentheses when there is no confusion about the meaning of the

given expression.

Property 1 For any τ and σ, we have τ σ = −→τ σ ↓τ σ.

Property 2 For any π, π′, τ and σ we have (π′ π) τ σ = π′ (π τ σ).
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Contexts

Γ ` • : τ −→ τ
empty

Γ ` K : τ
σ1−−→ τ1 Γ ` e : τ ′ [τ2 σ2] τ3 σ3

Γ ` Ke : (τ ′
[τ1 σ1] τ2 σ2−−−−−−−−→ τ)

σ3−−→ τ3
appl

Γ ` K : τ
σ1−−→ τ1 Γ ` v : τ ′

[τ1 σ1] τ2 σ2−−−−−−−−→ τ

Γ ` vK : τ ′
σ2−−→ τ2

appr

Γ ` K : τ1
σ−→ τ2 τ ′1 ≤ τ1 τ2 σ ≤ τ ′2 σ′

Γ ` K : τ ′1
σ′−→ τ ′2

sub

Pure contexts

Γ `P • : τ −→ τ
empty

Γ `P K : τ1−→ τ2 Γ ` e : τ3

Γ `P Ke : (τ3−→ τ1)−→ τ2
appl

Γ `P K : τ1−→ τ2 Γ ` v : τ3−→ τ1

Γ `P vK : τ3−→ τ2
appr

Γ `P K : τ1−→ τ2 τ ′1 ≤ τ1 τ2 ≤ τ ′2
Γ `P K : τ ′1−→ τ ′2

sub

Trails

Γ ` � : ι
empty

Γ ` K : τ ′ σ−→ τ Γ `M : π

Γ ` K ·M : (τ ′ σ−→ τ) π
cons

Subtyping for trail types

ι ≤ ι
t-nil

τ1
σ−→ τ2 ≤ τ ′1 σ′−→ τ ′2 π ≤ π′

(τ1
σ−→ τ2) π ≤ (τ ′1

σ′−→ τ ′2) π′
t-cons

Metacontexts, programs

Γ ` TM : π Γ `P K : τ ′′−→ τ ′ τ ≤ π τ ′′

Γ ` 〈TM ,K〉 : τ −→ τ ′
meta

Γ ` e : τ σ Γ ` T : −→τ σ Γ `P K : ↓τ σ−→ τ ′

Γ ` 〈e, T,K〉 : τ ′
prog

Fig. 6 Typing rules for contexts and trails in λS0≤

The typing rules for contexts and trails are shown in Figure 6. Contexts are assigned

function types, and the types of trails are just lists of context types. We can relate these

typings to the typing relation for terms:

Lemma 3 (Typing contexts) Γ ` K : τ ′ σ−→ τ if and only if Γ ` λx.〈K[x]〉 : τ ′ σ−→ τ .

Lemma 4 (Typing trails) Γ ` T : π is derivable if and only if for every e, τ , σ such

that Γ ` e : π τ σ one can derive Γ ` T [e] : τ σ.

Additionally, we introduce the notion of pure contexts, which are not allowed to

have occurrences of the shift0 operator not surrounded by a reset0. For this typing

relation the following lemma holds:

Lemma 5 (Typing pure contexts) Γ `P K : τ ′−→ τ if and only if Γ ` λx.K[x] :

τ ′−→ τ .
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Pure typing of contexts is a restricted version of the impure typing, in the sense

that even when considering only contexts with a pure type (i.e., of the form τ −→ τ ′),
there are strictly fewer pure contexts than impure ones. For example, take the context

K = • (S0f.y) in the type environment Γ = y : α. We have

y : α ` λx.〈x (S0f.y)〉 : (α [α] α−−−→α)−→α

so from Lemma 3 follows that y : α ` K : (α [α] α−−−→α)−→α. But any type of the term

λx.x (S0f.y) (λx.K[x] from Lemma 5) must have the function arrow annotated with

an impure annotation, therefore y : α 6`P K : (α [α] α−−−→α)−→α.

However, every pure context is an impure one:

Lemma 6 (Impure typing of pure contexts) If Γ `P K : τ ′−→ τ , then Γ ` K :

τ ′−→ τ .

We can now introduce the typing relation for programs. As witnessed by the unique-

decomposition theorem, we can view a program as composed of three parts: an expres-

sion, a trail, and a pure context at the bottom. The following theorem establishes the

correctness of the rule prog:

Lemma 7 (Typing programs) Γ ` 〈e, T,K〉 : τ if and only if Γ ` K[T [e]] : τ .

Next, we formally introduce the notion of metacontexts, which will play a role

in proving termination. A metacontext in our system is a pair of a trail TM , typed

Γ ` TM : π for some π, and a pure context K, typed Γ `P K : τ ′′−→ τ ′ for some τ ′ and

τ ′′, and where for some τ we have τ ≤ π τ ′′. The intuitive meaning of this restriction

is that the contexts in the trail cannot access contexts outside of it and they can be

composed, so that when given a value of type τ , they produce a value of type τ ′′, which

can be put into the pure context at the bottom.

Lemma 8 (Typing metacontexts) Γ ` 〈TM ,K〉 : τ → τ ′ if and only if Γ, x : τ `
K[TM [x]] : τ ′.

Finally, we introduce a different notion of program decomposition. In a well-typed

program, the trail can be split into two parts: the top part, which is accessible by

the expression inside, and the bottom part, which is guaranteed by the type of the

expression to be inaccessible. This bottom part of the trail, together with the pure

context at the very bottom, form a metacontext. This is made formal by the following

theorem:

Theorem 6 If Γ ` e : τ σ and Γ ` 〈e, T,K〉 : τ ′, then there exist T1 and TM such

that T = T1 · TM , Γ ` T1 : −→τ σ, and Γ ` 〈TM ,K〉 : ↓τ σ−→ τ ′.

3.3 Termination

We now prove termination of evaluation of closed well-typed expressions using a variant

of the method described in [5,6]. We believe that it is instructive to see the proof in full

detail. First, the proof reveals otherwise hidden nuances of how the reduction semantics

and the type system interact. Second, it contains explicit information on how well-typed

terms in our language are evaluated: each case of the proof of Lemma 13 corresponds

exactly to a clause of an evaluator which can be extracted from this proof [5,6].
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Let us start by defining three families of mutually inductive predicates. The families

are defined by induction on types: Rτ is defined on well-typed values and is indexed

by their types, T π is defined on well-typed trails and is indexed by trail types, and

finallyMτ is defined on metacontexts and is indexed by their argument types. We also

define a predicate N (e, T,K) defined on well-typed programs, which means that the

evaluation of this program terminates, i.e., that K[T [e]]−→ ∗v for some value v.

Rα(v) := >
Rτ ′ σ−→ τ(v) := ∀v′, T, TM ,K.

Rτ ′(v′)⇒
T −→τ σ(T )⇒
M↓τ σ(TM ,K)⇒
N (v v′, T · TM ,K)

T ι(�) := >
T (τ ′ σ−→ τ) π(K · T ) := Rτ ′ σ−→ τ(λx.〈K[x]〉) ∧ T π(T )

Mτ(TM ,K) := ∀v.Rτ(v)⇒ N (v, TM ,K)

For the proof, we need several lemmas about the subtyping relation and its con-

nection to the typing rules and the above predicates.

Lemma 9 If τ ≤ π τ1, Γ ` T : π, Γ ` 〈TM ,K〉 : τ1−→ τ2, then Γ ` 〈T · TM ,K〉 :

τ −→ τ2.

Proof From Γ ` 〈TM ,K〉 : τ1−→ τ2 for some τ ′, π′ we have Γ ` TM : π′, Γ `P K :

τ ′−→ τ2 and τ1 ≤ π′ τ ′. So Γ ` T · TM : π π′. From τ1 ≤ π′ τ ′ we have π τ1 ≤ π π′ τ ′,
by transitivity from the assumption τ ≤ π τ1 we have τ ≤ π π′ τ ′.

Lemma 10 1. The predicates respect the subtyping relations:

R. If τ ≤ τ ′ and Rτ(v), then Rτ ′(v).

T. If π ≤ π′ and T π(T ), then T π′(T ).

M. If τ ′ ≤ τ and Mτ(TM ,K), then Mτ ′(TM ,K).

2. If τ ′ σ′ ≤ τ σ, T −→τ σ(T ) and M↓τ σ(TM ,K), then for some T ′, T ′M we have

T −−→τ ′ σ′(T ′), M↓τ ′ σ′(T ′M ,K) and T · TM = T ′ · T ′M .

Proof Proof by simultaneous induction. The proofs refer to other cases of the lemma

with smaller subtyping derivations. The only exception is a reference from (1M) to

(1R), but since it does not introduce a cycle, the induction is justified.

1R. τ = τ1
σ−→ τ2, τ ′ = τ ′1

σ′−→ τ ′2. We have τ ′1 ≤ τ1 and τ2 σ ≤ τ ′2 σ
′. Let v, T , TM , K

be such that Rτ ′
1
(v), T −−−→τ ′

2 σ
′(T ),M↓τ ′

2 σ
′(TM ,K). By induction hypothesis for case

(2) we have T ′ and T ′M such that T −−→τ2 σ(T ′),M↓τ2 σ(T ′M ,K) and T ·TM = T ′ ·T ′M .

Thus from the assumption Rτ(v) follows the thesis.

1T. The case π = π′ = ι is trivial. Let π = τ1
σ−→ τ2 π1 and π′ = τ ′1

σ′−→ τ ′2 π
′
1. Then we

have τ1
σ−→ τ2 ≤ τ ′1

σ′−→ τ ′2, π1 ≤ π′1, T = K · T1, Rτ1 σ−→ τ2(λx.〈K[x]〉) and T π1(T1).

By induction hypothesis for case (1R) and (1T) we get Rτ ′
1
σ′−→ τ ′

2
(λx.〈K[x]〉) and

T π′
1
(T1), which give us the thesis.

1M. Let v be such that Rτ ′(v). By case (1R) we have Rτ(v), with Mτ(TM ,K) this

gives us N (v, TM ,K).

2. Induction on the subtyping derivation.
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– σ′ = ε, σ = ε. Then T = �, τ ′ ≤ τ , Mτ(TM ,K). Let T ′ = �, T ′M = TM . We

thus need to show that Mτ ′(TM ,K), but that follows from case (1M).

– σ′ = ε, σ = [τ1σ1]τ2σ2. Then τ ′ ≤ τ , τ1σ1 ≤ τ2σ2 , T = K1 ·T ′, T τ σ1−→ τ1(K1),

T −−−→τ2 σ2(T ′), M↓τ2 σ2(TM ,K). Let T ′ = �, T ′M = T · TM . Trivially we have

T ι(�), we need to show thatMτ ′(T · TM ,K). The metacontext 〈T · TM ,K〉 is

well-typed by Lemma 9. Let v be such that Rτ ′(v), I will show that N (v, T ·
TM ,K). From case (1T) we have T τ ′ σ2−→ τ2(K1), by definition of T τ ′ σ2−→ τ2

we have Rτ ′ σ2−→ τ2(λx.〈K1[x]〉). With Rτ ′(v), T −−−→τ2 σ2(T ′) and M↓τ2 σ2(TM ,K)

we have N ((λx.〈K1[x]〉) v, T ′ ·TM ,K). Because (λx.〈K1[x]〉) v reduces in single

step to 〈K1[v]〉, we have N (〈K1[v]〉, T ′ ·TM ,K), which is equivalent to N (v,K1 ·
T ′ · TM ,K), which we wanted to prove.

– σ′ = [τ ′1σ
′
1]τ ′2σ

′
2, σ = [τ1σ1]τ2σ2. Then T = K1 ·T1, T τ σ1−→ τ1(K1), T −−−→τ2 σ2(T1),

M↓τ2 σ2(TM ,K), τ ′ ≤ τ and τ ′2 σ
′
2 ≤ τ2 σ2. By induction hypothesis we have

T ′1, T ′M such that T −−−→τ ′
2 σ

′
2
(T ′1), M↓τ ′

2 σ
′
2
(T ′M ,K) and T1 · TM = T ′1 · T ′M . From

M↓τ ′
2 σ

′
2
(T ′M ,K) we have M↓τ ′ σ′(T ′M , ,K). Let T ′ = K1 · T ′1. From τ1 σ1 ≤

τ ′1σ
′
1, τ ′ ≤ τ , T τ σ1−→ τ1(K1) and the induction hypothesis for case (1T) we have

T τ ′ σ′1−→ τ ′
1
(K1). With T −−−→τ ′

2 σ
′
2
(T ′1) we have T −−→τ ′ σ′(K1 · T ′1).

Lemma 11 For every type τ , T τ −→ τ(• ·�) holds.

Proof By the definition of T τ −→ τ it is sufficient to prove that Rτ −→ τ(λx.〈x〉). Let

v, TM , and K be such that Rτ(v) and Mτ(TM ,K) hold. We have to show that

N ((λx.〈x〉) v, TM ,K). The expression (λx.〈x〉) v reduces in two steps to v, so it suffices

to prove N (v, TM ,K), which follows from Rτ(v).

Lemma 12 For every type τ , Mτ(�, •) holds.

Proof Let v be a value of type τ , then N (v,�, •) is trivially true.

We now state the main lemma:

Lemma 13 Let Γ ` e : τ σ, where Γ = x1 : τ1, . . . , xn : τn. Assume that ~v is a

sequence of values of length n such that for every i, Rτi(vi) holds. Then for every trail

T such that T −→τ σ(T ) holds, and for every metacontext 〈TM ,K〉 such thatM↓τ σ(TM ,K)

holds, N (e{~v/~x}, T · TM ,K) holds.

Proof Induction on the structure of the typing derivation D of e.

– D = sub(D′, τ ′σ′ ≤ τ σ). From Lemma 10 (2) we have T ′, T ′M such that T −−→τ ′ σ′(T ′),
M↓τ ′ σ′(T ′M ,K) and T · TM = T ′ · T ′M . The conclusion follows from the induction

hypothesis.

– D = var, e = xi. So we have e{~v/~x} = vi, τ = τi, σ = ε ,T = �,Mτi(TM ,K). By

assumption Rτi(vi) and the definition of Mτi we have N (vi, TM ,K).

– D = abs(D′), e = λx.e′. So τ = τ ′′−→σ′τ ′, σ = ε, T = �, Mτ(TM ,K). As in the

previous case, to show that N ((λx.e′){~v/~x}, TM ,K) we need Rτ(λx.e′{~v/~x}).
Let v, T , TM , K be such that we have Rτ ′′(v), T −−→τ ′ σ′(T ) andM↓τ ′ σ′(TM ,K). We

need to show that N ((λx.e′{~v/~x}) v, T ·TM ,K). Because (λx.e′{~v/~x}) v reduces in

one step to e′{~v/~x}{v/x}, it suffices to show N (e′{~v/~x}{v/x}, T · TM ,K), which

follows from the induction hypothesis.
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– D = app(D1, D2), e = e1 e2. Then σ = [τAσA]τD σD, T = K1 ·T ′, T τ σA−−→ τA(K1),

T −−−−→τB σB(T ′), Γ ` e1 : τ ′ [τA σA] τB σB−−−−−−−−−→ τ [τC σC ] τD σD, Γ ` e2 : τ ′ [τB σB ] τC σC .

Let e′1 = e1{~v/~x} and e′2 = e2{~v/~x}. To show that N (e′1 e
′
2,K1 · T ′ · TM ,K), we

can show instead that N (e′1,K1 e
′
2 · T ′ · TM ,K) using the induction hypothesis for

D1, providing that T (τ ′ [τA σA] τB σB−−−−−−−−−→ τ)
σC−−→ τC(K1 e

′
2). To show that, let us un-

fold the definitions. Let vL, TL, TKL and ML satisfy the appropriate predicates,

i.e., Rτ ′ [τA σA] τB σB−−−−−−−−−→ τ(vL), T −−−−→τC σC(TL) and M↓τC σC(TKL,ML). Then we have

to show that N ((λx.〈K1[x e2]〉) vL, TL · TKL,ML). Because (λx.〈K1[x e2]〉) vL re-

duces in one step to 〈K1[vL e2]〉, we can show instead that N (〈K1[vL e2]〉, TL ·
TKL,ML). We will show instead that N (e2, vLK1 · TL · TKL,ML). This follows

for the induction hypothesis for D2, providing that T τ ′ σB−−→ τB(vLK1). To show

that, let us unfold the definitions again. Let vR, TR, TKR and MR be such that

Rτ ′(vR), T −→( τB σB(TR) andM↓τB σB(TKR,MR) hold. We then have to show that

N ((λx.〈K1[vL x]〉) vR, TR · TKR,MR) hold. Using analogous reasoning as before,

it is sufficient to show that N (vL vR,K1 · TR · TKR,MR), which follows from

Rτ ′ [τA σA] τB σB−−−−−−−−−→ τ(vL).

– D = app-pure(D1, D2), e = e1 e2. The proof is similar to the case for app.

– D = shift0(D′), e = S0f.e′. So, in this case σ = [τ ′ σ′] τ ′′ σ′′, T = K1 · T ′,
Rτ σ′−→ τ ′(λx.〈K1[x]〉), T −−−→τ ′′σ′′(T ′) and M↓τ ′′σ′′(TM ,K). We want to show that

N (S0f.e{~v/~x},K1 · T ′ · TM ,K), which is equivalent to N (〈K1[S0f.e{~v/~x}]〉, T ′ ·
TM ,K). Because 〈K1[S0f.e{~v/~x}]〉 reduces to e{~v/~x}{λx.〈K[x]〉/f}, it suffices to

show that N (e{~v/~x}{λx.〈K[x]〉/f}, T ′ · TM ,K), which follows from the induction

hypothesis.

– D = reset0(D′), e = 〈e′〉. Then for some τ ′ we have Γ ` e′ : τ ′ [τ ′] τ σ. From

Lemma 11 have T τ ′−→ τ ′(•·�), and thus T −−−−−−→τ ′ [τ ′] τ σ(•·T ). The induction hypothesis

gives us N (e′{~v/~x}, •·T ·TM ,K), which is equivalent to the thesis, N (〈e′〉{~v/~x}, ·T ·
TM ,K).

Theorem 7 (Termination) If ` e : τ , then the evaluation of e terminates, i.e.,

N (e,�, •) holds.

Proof We have T ι(�) and from Lemma 12 we haveMτ(�, •), thus the theorem follows

from Lemma 13.

3.4 Type inference

The type inference algorithm should reconstruct types for a given expression and find

its principal type. So let us direct our attention first to the principal types. It would

be nice if the principal type for any expression e was an annotated type τ σ such that

Γ ` e : τ σ and every other type could be obtained via substitution and subtyping—but

that is not the case. Let us take a look at the expression λf.λx.f x; f x (the semicolon

operator can be defined as e1; e2 = (λx.e2) e1, where x 6∈ e2). It has three distinct

typings:

– (τ1−→ τ2)−→ τ1−→ τ2 (pure argument, pure result)

– (τ1−→ τ2)−→ τ1
[τ σ] τ σ−−−−−→ τ2 (pure argument, impure result)

– (τ1
[τ σ] τ σ−−−−−→ τ2)−→ τ1

[τ σ] τ σ−−−−−→ τ2 (impure argument, impure result)

There is no type which would be the supertype of the three types above. But notice

that these types are all of the form (τ1
σ1−→ τ2)−→ τ1

σ2−→ τ2, where σ1 ≤ σ2 and σ2 is
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either ε, or is equal to [τ σ]τ σ for some τ and σ. So the notion of principal type (and the

type inference algorithm) for λS0 has to include the possibility of these constraints ap-

pearing. This observation agrees with the classical results for the simply typed lambda

calculus with subtyping [30].

First, we replace the rules app and app-pure with the following (equivalent) rule:

Γ ` f : τ ′ σ3−→ τ σ1 Γ ` e : τ ′ σ2 σ � σ1 σ2 σ3

Γ ` fe : τ σ
app-comp,

where the relation �, which relates an annotation to a sequence of annotations, is

defined as follows:

ε� [τ σ] τ σ �

ε� ~σ

ε� ε ~σ

[τf σf ] τ2 σ2 � ~σ

[τf σf ] τ1 σ1 � [τ2 σ2] τ1 σ1 ~σ

The meaning of the relation � is that when we have σ � σ1 . . . σn, then any n

computations annotated with σ1 . . . σn can be safely run sequentially, and the entire

sequence can be annotated with σ. Please take notice that (as displayed by the CPS

translation) call-by-value function application consists of three sequential steps: evalu-

ating the function, evaluating the argument, and executing the function applied to the

argument. This is reflected in the app-comp typing rule.

Expressions of the form τ ≤? τ and σ ≤? σ will be called subtyping constraints,

and expressions of the form σ �? ~σ will be called sequence constraints. Inside the

constraints, the syntax of effect annotations is extended by annotation variables δ.

We will be using substitutions defined on both the type variables and annotation

variables. We say that a substitution s σ-grounds a set of (subtyping or sequence)

constraints S if s(S) do not contain any annotation variables. We say that a substitution

s solves a constraint σ1 ≤? σ2 (σ1 �? ~σ) if and only if s(σ1) ≤ s(σ2) (s(σ1) � s(~σ))

is derivable. This implies that the substitution σ-grounds the constraint, because the

definition of ≤ and � does not include annotation variables.

Theorem 8 (Principal types) For every term e and typing environment Γ there

exist: α, δ, a set of subtyping constraints S, and a set of sequence constraints C, such

that:

1. For every substitution s which solves S and C we have Γ ` e : s(α) s(δ).

2. For every τ , σ satisfying Γ ` e : τ σ there exists a substitution s such that s(α) = τ ,

s(δ) = σ and s solves S and C.

The principal type for the expression λf.λx.f x; f x, which we considered at the

beginning of this subsection, is (α1
δ1−→α2)

δ2−→α3
δ3−→α4δ4 with constraints: α3 ≤ α1,

α2 ≤ α4, δ1 ≤ δ5, δ1 ≤ δ6, δ7 � δ5δ6, δ7 ≤ δ3, ε ≤ δ2, ε ≤ δ4. (A simpler type for

this expression, which is an instance of the principal type and works well in practice,

is (α1
δ−→α2)−→α1

δ−→α2 with constraint δ � δδ.)

The type inference algorithm (written in pseudocode) is shown in Figure 7. The

function infer final defined there takes two parameters: the type environment (which

maps variable names to types) and the expression considered. It finds the principal
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infer Γ e =
match e with
x → (Γ (x), ε, VAR)
λx.e′ →

let α = clean tvar()
let (τ , σ, D) = infer (Γ ∪ {x 7→ α}) e′
(α σ−→ τ , ε, ABS(D))

e1 e2 →
let (τ1, σ1, D1) = infer Γ e1
let (τ2, σ2, D2) = infer Γ e2
let (α1, α2) = (clean tvar(), clean tvar())
let (δ1, δ2, δ3, δ) = (clean avar(), clean avar(), clean avar(), clean avar())

let C1 = emit constraint (τ1 σ1 ≤? α1
δ3−→α2 δ1)

let C2 = emit constraint (τ2 σ2 ≤? α1 δ2)
let C = emit constraint (δ �? δ1δ2δ3)
(α2, δ, APP(SUB(D1, C1), SUB(D2, C2) , C))
S0f.e′ →

let (α1, α2, δ) = (clean tvar(), clean tvar(), clean avar())

let (τ , σ, D) = infer (Γ ∪ {f 7→ α1
δ−→α2}) e′

(α1, [α2 δ] τ σ, SHIFT0(D))
〈e〉 →

let (τ , σ, D) = infer Γ e
let (α′, α, δ) = (clean tvar(), clean tvar(), clean avar())
emit constraint (τ σ ≤? α′ [α′] α δ)
(α, δ, RESET0(D))

infer final Γ e =
let (τ , σ, D) = infer Γ e
let (α, δ) = (clean tvar(), clean avar())
let C = emit constraint (τ σ ≤? α δ)
(α, δ, SUB(D,C))

Fig. 7 Type inference algorithm

type (the variables α and δ from Theorem 8 along with the unsolved constraints) in

polynomial time and it also generates a typing derivation skeleton, where subtyping

derivations have to be filled in. It works the same way as the standard type inference

algorithm for the simply typed lambda calculus, only that instead of emitting type

equality constraints (which can be solved immediately with the unification algorithm),

it emits type inequality and annotation sequencing constraints (as a side effect).

In order to check if the term can actually be well-typed (and to obtain a concrete

typing derivation), one has to find a substitution which solves the inequalities. It is

easy to see that we can do the following simplification steps on the constraints:

– δ ≤? ε—substitute δ = ε;

– [τ1 σ1] τ2 σ2 ≤? δ— substitute δ = [α1 δ1] α2 δ2 and add new constraints α1 ≤? τ1,

δ1 ≤? σ1, τ2 ≤? α2, σ2 ≤? δ2, where α1, α2, δ1, δ2 are fresh variables;

– α ≤? τ1
σ−→ τ2— substitute α = α1

δ−→α2 and add new constraints τ1 ≤? α1, α2 ≤?

τ2, δ ≤? σ, where α1, α2, δ are fresh variables;

– τ1
σ−→ τ2 ≤? α— substitute α = α1

δ−→α2 and add new constraints α1 ≤? τ1, τ2 ≤?

α2, σ ≤? δ, where α1, α2, δ are fresh variables;

– σ0 �? σ1 . . . σn when for some i from 0 to n we have σi = ε— unify every σi with

ε;
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JαK = α

Jτ1 σ−→ τ2K = Jτ1K−→ Jτ2 σK

Jτ εK = JτK
Jτ [τ1 σ1] τ2 σ2K = (JτK−→ Jτ1 σ1K)−→ Jτ2 σ2K

Jα ≤ αK = λx.x

Jτ ′1
σ1−−→ τ1 ≤ τ ′2

σ2−−→ τ2K = λf.λx.Jτ1 σ1 ≤ τ2 σ2K(f(Jτ ′2 ≤ τ ′1Kx))

Jτ ε ≤ τ ′ εK = Jτ ≤ τ ′K
Jτ ε ≤ τ ′ [τ1 σ1] τ2 σ2K = λx.λf.Jτ1 σ1 ≤ τ2 σ2K(f(Jτ ≤ τ ′Kx))

Jτ [τ1 σ1] τ ′1 σ
′
1 ≤ τ ′ [τ2 σ2] τ ′2 σ

′
2K = λf.λg.Jτ ′1 σ

′
1 ≤ τ ′2 σ′2K

(f(λx.Jτ2 σ2 ≤ τ1 σ1K(g(Jτ ≤ τ ′Kx))))

JxKvar = x

JeKsub(D,τ σ≤τ ′ σ′) = Jτ σ ≤ τ ′ σ′KJeKD
Jλx.eKabs(D) = λx.JeKD

Je1e2Kapp-pure(D1,D2) = Je1KD1
Je2KD2

Je1e2Kapp(D1,D2) = λk.Je1KD1
(λf.Je2KD2

(λx.fx k))

JS0f.eKshift0(D) = λf.JeKD
J〈e〉Kreset0(D) = JeKD(λx.x)

Fig. 8 Type-directed CPS translation for λS0≤

– σ0 �? σ1 . . . σn when for some i from 0 to n we have σi = [ ] — get n+ 1 pairs of

fresh variables α0 δ0, . . . , αn δn, unify σ0 with [αn δn] α0 δ0, for every i from 1 to

n unify σi with [αi δi] αi−1 δi−1.

The only constraints remaining unsolved after the simplifications are of the form

α1 ≤? α2, δ1 ≤? δ2, ε ≤? δ, δ ≤? [τ1 σ1] τ2 σ2, δ0 �? δ1 . . . δn. They can be dealt with,

e.g., using backtracking. The solution can be used to instantiate the type derivation

skeleton returned from the algorithm in Figure 7.

3.5 Type-directed CPS translation

Having extended the type system with subtyping, we can derive from it a type-directed

CPS translation, which takes into account the additional information given by the

subtyping. This translation, defined in Figure 8, targets the simply typed lambda

calculus. The derivations of the subtyping relation are translated to coercion functions,

which are typed as expected:

Lemma 14 If τ σ ≤ τ ′ σ′, then ` Jτ σ ≤ τ ′ σ′K : Jτ σK−→ Jτ ′ σ′K in λ→. If τ ≤ τ ′, then

` Jτ ≤ τ ′K : JτK−→ Jτ ′K in λ→.

The translation preserves types:

Theorem 9 (Type preservation) If D is a typing derivation of Γ ` e : τ σ in λS0≤ ,

then JΓ K ` JeKD : Jτ σK in λ→.
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An interesting property of the translation is that it keeps terms annotated as pure

in direct style. This is similar to the selective translations presented in [25], [31], and re-

cently in [36], which also use effect annotations to distinguish pure terms from effectful

ones.

Unfortunately, the translation does not preserve reductions. For example, let us

consider the term 〈S0f.f〉. We have ` 〈S0f.f〉 : τ → τ and 〈S0f.f〉 → λx.〈x〉. For

the simplest (which means: the number of inference rules used in it is the smallest)

derivation D, we have

J〈S0f.f〉KD = (λf.f) (λx.x)

and for the simplest derivation D′, we have

Jλx.〈x〉KD′ = λx.(λx.λk.(λx.x) (k ((λx.x)x)))x (λx.x).

So we cannot β-reduce J〈S0f.f〉KD to Jλx.〈x〉KD′ , although they are β-equal. For this

reason, this CPS translation could not be used as-is for proving termination of evalu-

ation of well-typed terms in λS0≤ .

4 Programming examples

4.1 Prototype implementation

In order to study the applications of the type system λS0≤ , presented in this article,

to practical programming, we have developed its prototype implementation. The im-

plementation adds some standard syntactic sugar to the language and extends it with

integers, algebraic data types and recursion.

We extend the syntax as follows:

e ::= . . . | true | false | if e then e else e

| nil | cons(e, e) | case e {nil−→ e; cons(x1, x2)−→ e}

| n | e⊕ e | e R e | fixx.e

τ ::= . . . | int | bool | list(τ)

The typing rules for new expressions introduced above are given in Figure 9.

In the implementation language, the string @f.e means S0f.e, and <e> means 〈e〉.
The rest of the syntax used is ML-like.

4.2 Example—prefixes

The prefixes example shown in Figure 10 has been considered in [2] and in [6]. The

function prefixes lists all of the prefixes of a given list, e.g., prefixes [1,2,3] yields

[[1],[1,2],[1,2,3]]. The idea behind the program is that the continuation represents

the currently considered prefix of the given list, and the function uses it to emit the

result below the delimiter.

This example cannot be typed in the original type system of Danvy and Filinski,

because the captured continuation is applied in contexts with different answer types.

In our type system, this problem is taken care of by the subtyping relation. In the first
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Γ ` true : bool
true

Γ ` false : bool
false

Γ ` b : bool σ1 Γ ` e1 : τ σ2 Γ ` e2 : τ σ2 σ � σ1 σ2

Γ ` if b then e1 else e2 : τ σ
if

Γ ` n : int
int

Γ ` n1 : int σ1 Γ ` n2 : int σ2 σ � σ1 σ2

Γ ` n1 ⊕ n2 : int σ
arith

Γ ` n1 : int σ1 Γ ` n2 : int σ2 σ � σ1 σ2

Γ ` n1 R n2 : bool σ
rel

Γ ` nil : list(τ)
nil

Γ ` h : τ σ1 Γ ` t : list(τ) σ2 σ � σ1 σ2

Γ ` cons(h, t) : list(τ) σ
cons

Γ ` e : list(τl) σ1 Γ ` e1 : τ σ2 Γ, h : τl, t : list(τl) ` e2 : τ σ2 σ � σ1 σ2

Γ ` case e{nil−→ e1; cons(h, t)−→ e2} : τ σ
case

Γ, x : τ ` e : τ

Γ ` fix x.e : τ
fix

Fig. 9 Typing rules for booleans, integers, lists and recursion

occurrence (k []) the continuation is simply given the pure type list(int)−→ list(int). In

the second (k (w xs)), it is given a more complex type list(int) [list(int)] list(int)−−−−−−−−−−→ list(int).

Another interesting thing in this example is that it still works correctly when the

first reset inside the shift0 in the Cons branch is removed—i.e. the original shift is

replaced by shift0.

4.3 Example—partition

The prefixes example does not take advantage of the semantics of shift0, because it

can be typed with flat effect annotations. This is not the case for partition, shown

in Figure 11. This program partitions a list of integers into three parts: the ones less

than, equal, and greater than a number given as a parameter, maintaining the original

order between the integers in each group, e.g., partition 3 [4,1,3,5,2,3] yields

[1,2,3,3,4,5]. The idea behind this example is that the two reset0’s are used as

“markers” for the positions in the result where we insert new elements, and shift0 is

used to reach those markers.

The inner function part is given the following type:

list(int) [list(int)] list(int) [list(int)] list(int)−−−−−−−−−−−−−−−−−−−−−→ list(int)

Hence, it requires two contexts, both of the type list(int)−→ list(int), and returns a final

value of type list(int). These contexts are the “accumulators” for the elements less than

and equal to the given value.

The subtyping relation is crucial for typing this example. In particular, in the

non-recursive Nil case, the following subtyping is used:

list(int) ≤ list(int) [list(int)] list(int) [list(int)] list(int),
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let prefixes xs =
let w l = case l {

Nil -> @k. Nil
| Cons(x, xs) ->

Cons(x, @k. <Cons(k [], <k (w xs)>)>)
} in <w xs>

Fig. 10 Example program—prefixes

let partition a l =
let part l = case l {

Nil -> []
| Cons(h,t) ->

if h > a
then Cons(h, part t)
else if h == a

then @f. Cons(h, <f (part t)>)
else @f g. Cons(h, <g <f (part t)>>)

} in <<part l>>

Fig. 11 Example program—partition

where the subtyping derivation for the effect annotations is as follows:

list(int) ≤ list(int)

list(int) ≤ list(int) ε ≤ ε
ε ≤ [list(int)] list(int)

ε ≤ [list(int)] list(int) [list(int)] list(int)

Using the translation from Figure 8 we obtain the following coercion function (reduced

to normal form for clarity):

λx.λk1.λk2.k2 (k1 x)

We can see that in the translated term the composition of the “accumulator” contexts

after traversing the entire input list is done by the coercion function.

5 Relation to shift/reset

In this section, we discuss the influence of the presented theory for shift0 and reset0 on

their relation with shift and reset.

5.1 Embedding of Danvy and Filinski’s type system into λS0≤

The operational semantics of shift0 suggests that the shift operator can be defined with

shift0 and reset0 by putting a reset0 inside a shift0: Sf.e = S0f.〈e〉; reset0 then behaves

just like reset. Using this definition, one can check how the type system presented here

relates to the type system for shift/reset introduced by Danvy and Filinski [14] (let us

call their system λS→). First, we define a translation from λS→ to λS0≤ on terms and

types (the syntactic forms not mentioned below translate homomorphically):
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Γ, x : τ ; τ ′ ` x : τ ; τ ′
var

=⇒

Γ, x : τ ` x : τ
var

...

τ ≤ τ [τ ′] τ ′

Γ, x : τ ` x : τ [τ ′] τ ′
sub

Γ, x : τ ; τ1 ` e : τ ′; τ2

Γ ; τ ′′ ` λx.e : (ττ1 →τ2 τ
′); τ ′′

abs

=⇒

Γ, x : τ ` e : τ ′ [τ1] τ2

Γ ` λx.e : τ
[τ1] τ2−−−−→ τ ′

abs
...

τ
[τ1] τ2−−−−→ τ ′ ≤ τ [τ1] τ2−−−−→ τ ′[τ ′′] τ ′′

Γ ` λx.e : τ
[τ1] τ2−−−−→ τ ′[τ ′′] τ ′′

sub

Γ ; τ ′4 ` e1 : (τ1τ ′1
→τ ′3

τ2); τ ′2 Γ ; τ ′3 ` e2 : τ2; τ ′4

Γ ; τ ′1 ` e1e2 : τ2; τ ′2
app

=⇒

Γ ` e1 : τ1
[τ′1] τ′3−−−−→ τ2 [τ ′4] τ ′2 Γ ` e2 : τ1 [τ ′3] τ ′4

Γ ` e1e2 : τ2 [τ ′1] τ ′2
app

Γ, f : (ττ ′ →τ ′ τ1); τ3 ` e : τ3; τ2

Γ ; τ1 ` Sf.e : τ ; τ2
shift

=⇒

Γ, f : τ [τ′] τ′−−−−→ τ1 ` e : τ3 [τ3] τ2

Γ, f : τ [τ′] τ′−−−−→ τ1 ` 〈e〉 : τ2

reset0

Γ ` S0f.〈e〉 : τ [τ1 [τ ′] τ ′] τ2
shift0

...

τ [τ1 [τ ′] τ ′] τ2 ≤ τ [τ1] τ2

Γ ` S0f.〈e〉 : τ [τ1] τ2
sub

Γ ; τ1 ` e : τ1; τ

Γ ; τ ′ ` 〈e〉 : τ ; τ ′
reset

=⇒

Γ ` e : τ1 [τ1] τ

Γ ` 〈e〉 : τ
reset0

...

τ ≤ τ [τ ′] τ ′

Γ ` 〈e〉 : τ [τ ′] τ ′
sub

Fig. 12 Embedding of Danvy and Filinski’s type system λS→ into λS0≤
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τ = τ

τ1 τ3 −→ τ4τ2 = τ1
[τ3] τ4−−−−→ τ2

Sf.e = S0f.〈e〉

Using this translation, one can prove the following result:

Theorem 10 If Γ ; τ1 ` e : τ ; τ2 in λS→, then Γ ` e : τ [τ1] τ2 in λS0≤ .

One can also consider the CPS translations in both systems λS→ and λS0≤ . If we

introduce the translation on typing derivations as shown in Figure 12, we notice that

the CPS translations of the typing derivations resulting from this translation are β-

equal to the standard CPS translations for shift and reset [14]. In order to formalize

this observation we introduce the following notation. If D is a typing derivation in λS→,

then D is the corresponding typing derivation in λS0≤ , obtained using the translation

inductively defined in Figure 12.

Lemma 15 Let De be a typing derivation for the term e in λS→. Then the following

equalities hold:

– JSf.eKDSf.e
=β λk.JeKDe{λx.λk

′.k′ (k x)/f}(λx.x)

– J〈e〉KD〈e〉
=β λk.k(JeKDe(λx.x))

As a corollary, we can prove by straightforward induction the following theorem

that coupled with Theorem 10 materializes the folklore relation of shift and shift0 in

the typed setting:

Theorem 11 Let e be a well-typed term in λS→, and let D be its typing derivation.

Then JeK =β JeKD.

5.2 Embedding of Biernacka and Biernacki’s type system into λS0≤

We can also consider the type system of [6], which we call λSB. Again, we first define a

translation on terms, types and context types (as before, syntactic forms not mentioned

below are translated homomorphically):

b = τb

τ1 τ3 −→ τ4τ2 = τ1
[τ3] τ4−−−−→ τ2

τ1 B τ2 = τ1−→ τ2

k ←↩ e = k e

Sk.e = S0k.〈e〉

Then, the following theorem holds:

Theorem 12 If Γ,∆; τ1 ` e : τ ; τ2 in λSB, then Γ ∪∆ ` e : τ [τ1] τ2 in λS0≤ .
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ε ≤ ε
s-eps

τ ≤ τ ′

ε ≤ [τ ] τ ′
s-pure

τ2 ≤ τ1 τ ′1 ≤ τ ′2
[τ1] τ ′1 ≤ [τ2] τ ′2

s-npure

τ ≤ τ ′ σ ≤ σ′

τ σ ≤ τ ′ σ′
s-str

α ≤ α
s-var

τ ′2 ≤ τ ′1 τ1 σ1 ≤ τ2 σ2
τ ′1

σ1−−→ τ1 ≤ τ ′2
σ2−−→ τ2

s-fun

Γ, x : τ ` x : τ
var

Γ ` e : τ σ τ σ ≤ τ ′ σ′

Γ ` e : τ ′ σ′
sub

Γ, x : τ1 ` e : τ2 σ

Γ ` λx.e : τ1
σ−→ τ2

abs
Γ ` e1 : τ1−→ τ2 Γ ` e2 : τ1

Γ ` e1e2 : τ2
app-pure

Γ ` e1 : τ1
[τ′1] τ′3−−−−→ τ2 [τ ′4] τ ′2 Γ ` e2 : τ1 [τ ′3] τ ′4

Γ ` e1e2 : τ2 [τ ′1] τ ′2
app

Γ, f : τ1−→ τ2 ` e : τ3

Γ ` S0f.e : τ1 [τ2] τ3
shift0

Γ ` e : τ ′ [τ ′] τ

Γ ` 〈e〉 : τ
reset0

Fig. 13 Type system for λS0 with flat effect annotations (λS≤)

For both type systems for shift considered here, there exist terms which are not

well-typed in those systems, but their translation to λS0≤ is well-typed. In particular,

the following term:

(λf.λy.(λz.〈(λv.λw.y) (f y)〉) 〈f y〉) (λx.x)

cannot be typed in either of the two systems. However, it translates without changes

to λS0≤ , where it is well typed (for example, it can be assigned the type α−→ (β−→α)).

In this sense, the type system presented here is strictly more expressive than the other

systems.

5.3 A type system for shift0 and reset0 with flat effect annotations

An interesting feature of the translations of Sections 5.1 and 5.2 is that a non-empty

type annotation never occurs inside another type annotation—the annotations are

“flat.” Thus one can consider a variant of the λS0≤ type system, which enforces this

restriction syntactically:

τ ::= α | τ σ−→ τ

σ ::= ε | [τ ] τ

The typing rules for this system (called λS≤) are shown in Figure 13. For this type

system Theorem 10 and 11 still hold.

In this type system shift0 is forbidden from being used inside another shift0 without

a corresponding control delimiter and, therefore, only the top context of the stack can

be accessed by control operations. It follows that in this type system shift0 has the

operational semantics of shift. To see this, we observe that if D is a typing derivation

of Γ ` S0f.e : τ1 [τ2] τ3, then by using a coercion τ3 ≤ τ3 [τ3] τ3, we obtain a typing
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derivation D′ of Γ ` S0f.〈e〉 : τ1 [τ2] τ3 such that JS0f.eKD =β JS0f.〈e〉KD′ . We can

thus view this type system as an exotic type system for the shift operator (that is why

we call it λS≤).

5.4 A new untyped CPS translation for shift and reset

The untyped CPS translations of Section 2.2 also induce CPS translations for shift and

reset. For instance, for Sf.e expressed as Sf.〈e〉 the curried CPS translation of Figure 1

yields:

JSf.eK = λf.JeK (λx.λk.k x)

J〈e〉K = JeK(λx.λk.k x)

It is interesting to observe that although this CPS translation validates the standard

reduction semantics of shift and reset:

〈v〉  v

〈K[Sf.e]〉  〈e{λx.〈K[x]〉/f}]〉

it generates a different equational theory than the one of the standard CPS translation

for shift and reset [23]. For example, the equation

〈〈e〉〉 = 〈e〉

is not sound with respect to the presented CPS translation.

5.5 Static simulations of shift0 and reset0

The untyped uncurried CPS translation of Figure 2 can be modified slightly so that the

head of the list of contexts is captured by a separate lambda abstraction. This modified

translation gives rise to definitions of shift0 and reset0 operators in the continuation

monad with the following (recursive) answer type (where τ is an arbitrary type):

Ans = List (τ −→Ans)−→ τ

Therefore, shift0 and reset0 can be represented using the monadic reflection (µ) and

reification ([ · ]) operators that, as shown by Filinski [19], can be defined using shift

and reset. When specialized for the continuation monad, they read as follows:

µ(e) := Sk.λc.e (λx.k x c)

[e] = 〈(λx.λk.k x) e〉

Then we obtain the following simulation of shift0 and reset0:

stop := λx.λ[ ].x

pop := λx.λ(k : ks).k x ks

cont := λf.λx.µ(λk.λks.f x (k : ks))

S0f.e := µ(λk.λ(k′ : ks).(λf.[e]) (cont k) k′ ks)
〈e〉0 := µ(λk.λks.[e]pop (k : ks))

runS0 e := [e] stop [ ]
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In the above, stop defines the initial continuation, pop is the empty continuation pushed

by reset0, and runS0 starts the enclosed computation by providing the initial continu-

ation. This simulation coincides with the one presented by Shan in [37].

Using the CPS translation in Figure 1, one can define a new static simulation of

shift0 and reset0. As before, let us first define the answer type for the continuation

monad:

Ans = τ + ((τ −→Ans)−→Ans)

That is, the answer type is expressed as a sum type, where the left summand represents

the answer type of the top-level continuation and the right summand represents the

answer type of the remaining continuations. The simulation is then defined as follows

(where the sum-type specific operations are left implicit):

stop := λx.x

pop := λx.λk.k x

cont := λf.λx.µ(f x)

S0f.e := µ(λk.(λf.[e]) (cont k))

〈e〉0 := µ([e]pop)

runS0 e := [e] stop

Inlining stop, pop, cont and the monadic reflection and reification operators we get

the following simulation using shift and reset:

S0f.e := Sk.λc.(λf.〈(λx.λk.k x) e〉)(λx.Sk′.λc′.k x c (λx′.k′ x′ c′))

〈e〉0 := Sk.λc.〈(λx.λk.k x) e〉 (λx.λk.k x) (λx.k x c)

runS0 e := 〈(λx.λk.k x) e〉 (λx.x)

6 Related work

6.1 Relation to the Scala implementation

The type system and the selective CPS-translation presented here resemble strongly

those presented by Rompf et al. in [36] for the programming language Scala. The

presentation in [36] is based on Scala and is somewhat informal, so the exact comparison

is not possible, but still one can see the following similarities:

– Our annotations (from the type system λS≤) correspond to @cps annotations. For

example, our type α [β] γ corresponds to A @cps[B, C] in Scala.

– The type system of Scala distinguishes pure and impure expressions as our type

system does. In particular, as in our restricted system with flat annotations, the

expression inside a shift must have a pure type, the entire expression has an impure

type, and the captured continuation has a pure function type.

– Scala’s Shift class used for implementing delimited control, which implements the

continuation monad, is constructed by shift and consumed by reset, in the same way

that in our translation shift0 introduces a lambda abstraction and reset0 eliminates

it.

– Our annotation composition relation � introduced in Section 3.4 corresponds to

the comp control effect composition operation.
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The type system in [36] does not allow shift to be used inside another shift—it has

to be put inside a new reset. This is what happens with the shift0 operator with flat

effect annotations in our type system, which suggests that Scala actually implements

the restricted shift0/reset0 operators that only happen to operationally coincide with

shift/reset.

6.2 Substructural type system of Kiselyov and Shan

The type system for shift0/reset0 introduced by Kiselyov and Shan [27] shares many

properties with the type system presented in this work—in particular, strong type

soundness and termination. In their work, expressions and evaluation contexts are

treated as structure in linear logic, where structural rules play a vital role. Moreover,

their type system abstractly interprets (in the sense of abstract interpretation of Cousot

and Cousot [11]) small-step reduction semantics of the language and it does not require

effect annotations in judgments and arrow types. Instead these annotations occur in

types and cotypes assigned to terms and coterms, respectively. In terms of presentation,

our system is very close to the well-known type system by Danvy and Filinski and

seems more conventional than Kiselyov and Shan’s. Both type systems allow for answer

type modifications and for exploring the stack of contexts beyond the nearest control

delimiter. While in our type system subtyping is built in and plays a major role, leading

to an interesting CPS translation, in Kiselyov and Shan’s work it is just an entailment

of the type system.

Our type system is equivalent in expressive power to the type system of Kiselyov

and Shan. To embed our type system into theirs, we first need to replace all occurrences

of the reset0 operator 〈e〉 by # $ e. We take the following translations for types and

annotated types:

α = α

τ σ′−→ τ ′ = τ −→ τ ′ σ′

τ ε = τ

τ [τ ′ σ′] τ ′′ σ′′ = (τ ↑ τ ′ σ′) ↓ τ ′′ σ′′

Taking these translations, the proof is straightforward.

In the other direction, we need to represent the $ operator of Kiselyov and Shan

in our type system. We can do it using the following translation:

C $E = 〈(λx.S0z.C x)E〉

We also need to represent coterms, but they can be converted to equivalent terms easily.

The proof is more involved than the other direction, but still pretty straightforward.

We have studied some properties of the $ operator formed by the translation above

(slightly modified to account for possible control effects in the expression on the left

of the $) in [29]. In particular, we have shown that this operator can be used (and is

particularly well suited) for expressing the CPS hierarchy of Danvy and Filinski [14]

inside shift0/reset0.
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6.3 Monadic Framework for Delimited Continuations of Dybvig et al.

Dybvig, Peyton Jones and Sabry designed and implemented (in Scheme and Haskell) a

general framework for delimited continuations [16]. The paper defines, among others,

a CPS translation and an abstract machine. Many kinds of delimited control operators

can be defined within the framework, including the four variations described in [37]:

shift/reset, shift0/reset0, Felleisen’s control/prompt and its variant, control0/prompt0.

The framework also allows to use many kinds of delimiters (called prompts in the

paper) and dynamically create new ones. It is achieved by representing the metacontext

as a list of contexts interspersed with identifiers of prompts.

It is an interesting question how the CPS translation and abstract machine for

the framework of Dybvig et al. relates to the ones defined in this paper. It turns out

the relationship is rather complex, mostly owing to the generality of the framework.

The definitions of the CPS translation and abstract machine in [16] can be special-

ized to define a language with shift0/reset0 operators and only one prompt (for the

reset0 operator). The resulting definitions place many unnecessary empty contexts on

the metacontexts; these can be removed manually from the definitions. Then one can

simplify the definitions further by changing the representation of the metacontext to

just a list of contexts. Finally, the current context can be moved to the top of the meta-

context. The resulting abstract machine is the same (except for inessential details) as

the one presented in Figure 3, and the resulting CPS translation corresponds to the

uncurried CPS translation in Figure 2.

7 Conclusion

We have presented a new type system for the delimited-control operators shift0 and

reset0 that has been derived from a CPS translation for these control operators and

that generalizes Danvy and Filinski’s type system for shift and reset. The type system

is equipped with two subtyping relations: one on types and the other one on effect

annotations describing a stack of contexts in which a given expression can be embedded.

The subtyping mechanism makes it possible to coerce pure expressions into effectful

ones.

The effect annotations and the corresponding subtyping relation are used to guide

a selective CPS translation that precisely takes into account the information about the

contexts surrounding a translated expression. In particular, it leaves pure expressions

in direct style. Such a translation seems promising, if one would like to implement full-

fledged shift0 and reset0, e.g., in Scala (instead of their flat version that accidentally

coincides with shift and reset [36]). Our type annotations translate to Scala by nesting

the @cps annotations already used by the current implementation of delimited control.

For example, the effect-annotated type α [α] α [α] α would translate to Scala’s type

A @cps[A, A @cps[A, A]].

The present article also demonstrates the effectiveness of the context-based method

of reducibility predicates [5,6] that has turned out to be the right way to tackle the non-

trivial problem of termination of evaluation for the case of the type-and-effect system

with subtyping considered here. It can be observed (and remains to be verified, e.g.,

in Coq) that the computational content of this constructive proof takes the form of a

type-directed evaluator in CPS that corresponds to the type-directed CPS translation

presented in this work.
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The type system presented in this work is monomorphic, but it forms a foundation

for an extension to a full-fledged type-and-effect system with parametric polymor-

phism and subtyping. We expect that, as in the polymorphic type system of Asai and

Kameyama presented in [2], it should be safe to generalize the types of pure terms.

Also, because of the presence of subtyping, one might need to store constraints about

generalized variables in the polymorphic types, as in [22].

Another aspect of this work that deserves attention are equational theories of shift0
and reset0 with respect to the presented CPS translations, both in the untyped and

typed settings. In particular, it seems vital to understand the role of the subtyping

relation in the equational theories of the typed control operators.
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