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Abstract. The CPS hierarchy of control operators shifti/reseti of Danvy and Fil-
inski is a natural generalization of the shift and reset static control operators that
allow for abstracting delimited control in a structured and CPS-guided manner. In
this article we show that a dynamic variant of shift/reset, known as shift0/reset0,
where the discipline of static access to the stack of delimited continuations is
relaxed, can fully express the CPS hierarchy. This result demonstrates the expres-
sive power of shift0/reset0 and it offers a new perspective on practical applications
of the CPS hierarchy.

1 Introduction

In the recent years delimited continuations have been recognized as an important con-
cept in the landscape of eager functional programming, with new theoretical [1, 12],
practical [10, 13], and implementational [11, 14] advances in the field. Of the numer-
ous control operators for delimited continuations, the so-called static control operators
shift and reset introduced by Danvy and Filinski in their seminal work [8] occupy a
special position, primarily due to the fact that their definition has been based on the
well-known concept of the continuation-passing style (CPS). As such, shift and reset
have solid semantic foundations [2, 8], they are fundamentally related to other compu-
tational effects [9] and their use is guided by CPS [2, 8].

The hierarchy of control operators shifti/reseti [8] is a generalization of shift/reset
that has been defined in terms of the CPS hierarchy which in turn is obtained by iterated
CPS translations. The idea is that the operator shifti can access and abstract the context
up to the dynamically nearest enclosing control delimiter resetj with i ≤ j. The pri-
mary goal for considering the hierarchy is layering nested computational effects [8, 7]
as well as expressing computations in hierarchical structures [2]. Recently, Biernacka et
al. have proposed a framework for studying typed control operators in the CPS hierar-
chy [3], where more flexible than shifti/reseti hierarchical control operators have been
considered.

While the static delimited-control operators are often the choice for theoreticians
and practitioners, it has been observed already in Danvy and Filinski’s pioneering arti-
cle [8], that there is an interesting dynamic variant of shift and reset, nowadays known
as shift0 and reset0 [16], that allows to inspect the stack of delimited contexts arbitrarily
deep. In our previous work [15] we have presented a study of shift0 and reset0 in which
we employed a type-and-effect system with subtyping in order to faithfully describe
the interaction between terms and layered contexts. Interestingly enough, simple and
elegant CPS translations for shift0 and reset0, in both untyped and typed version, have
been given.
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Since shift0 and reset0 can explore and manipulate the stack of contexts quite ar-
bitrarily, the natural question of their relation to the CPS hierarchy arises. In this work
we answer this question by showing that shift0 and reset0 can fully express the CPS
hierarchy. To this end, we formally relate their operational semantics, CPS translations
and type systems. Furthermore, we show some typical examples of programming in the
CPS hierarchy implemented in terms of shift0/reset0 and an example that goes beyond
the CPS hierarchy.

On one hand, the results we present exhibit a considerable expressive power of shift0
and reset0. On the other hand, they provide a new perspective on the practice and theory
of the CPS hierarchy, with possible reasoning principles and implementation techniques
for the hierarchy in terms of shift0 and reset0.

The rest of the article is structured as follows. In Section 2, we present the syntax,
operational semantics, CPS translation and type system for the calculus λ$ that is a
variant of λS0—a calculus for shift0/reset0 [15]. In Section 3, we recall the syntax, op-
erational semantics, CPS translation and type system for the calculus λH

←↩—a calculus
for the CPS hierarchy, as defined in [3]. In Section 4, we provide a translation from λH

←↩
to λ$ and we prove soundness of this translation w.r.t. CPS translations, type systems,
reduction semantics, and abstract machines. In Section 5, we consider some program-
ming examples that illustrate the use of shift0 and reset0 in typical applications of the
CPS hierarchy. Finally, in Section 6 we conclude.

Theorems presented in this paper are machine-checked with the Twelf theorem
prover. The proofs can be accessed at http://www.tilk.eu/shift0/.

2 The calculus λS0 and its variant λ$

In this section, we present the syntax, reduction semantics, abstract machine, CPS trans-
lation and type system of the calculus λ$ that is a variant of λS0 introduced in [15].

2.1 Introducing shift0/dollar

The calculus λS0 is an extension of the call-by-value lambda calculus with a control
delimiter reset0 (〈〉) that delimits contexts and a control operator shift0 (S0) that captures
delimited contexts. In this work we introduce a new control operator, called dollar ($).
This operator is a generalization of the reset0 operator and its variant has been discussed
by Kiselyov and Shan [12].1 It generalizes reset0 in the sense that, while 〈e〉 intuitively
means ‘run e with a new, empty, context on the context stack’, the expression e1 $ e2
means ‘evaluate e1, then run e2 with the result of evaluating e1 pushed on the context
stack’. Despite this difference, dollar is equally expressive as reset0, in both typed and
untyped settings. The former one can obviously macro-express the latter as follows:

〈e〉 = (λx.x) $ e

1 The dollar of [12] syntactically allows only coterms (which describe contexts) to be pushed
on the context stack. In our language, we do not distinguish between terms and coterms and
thus allow any function to be pushed as a context on the context stack.
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The latter macro-expresses the former in a more complicated way:

e1 $ e2 = (λk.〈(λx.S0z.k x) e2〉) e1

We can read the expression above as follows. First, evaluate e1 and bind the resulting
value to the variable k (we are using the call-by-value semantics.) Then run e2 in a
new context—and after the evaluation finishes, remove the delimiter and call k with the
resulting value.

Even though reset0 and dollar are equally expressive, we believe that using the
little-studied dollar operator, rather than the well-known reset0, is justified. The reason
is that the translations which express the shiftk/resetk operators of the CPS hierarchy
using reset0/dollar rely on the semantics of dollar; replacing dollar with reset0 would
result in a clumsy and awkward translation. This will become clear in the main part
of the article. The dollar operator also has several interesting properties which make it
worth studying; in particular, it is, in a sense, the inverse of the shift0 operator.

2.2 Syntax and semantics of λ$

In this section we formally describe the syntax and reduction semantics of the λ$ lan-
guage. We introduce the following syntactic categories of terms, values, evaluation con-
texts and context stacks (called trails in this work):

terms e ::= x |λx.e | e e | e $ e | S0x.e
values v ::= λx.e
contexts K ::= • |K e | v K |K $ e

closed contexts K̂ ::= v$K

trails T ::= � | K̂ · T

Additionally, we use 〈e〉 as a shorthand for (λx.x) $ e. Metavariables x, y, f, g, . . .
range over variables.

Closed contexts are evaluation contexts terminated at the bottom with a dollar. For
the purpose of easier manipulation of closed contexts, we introduce the following short-
hands:

(v$K) e = v$(K e) v′ (v$K) = v$(v′K) (v$K) $ e = v$(K $ e)

We also define •̂ to mean (λx.x)$•.
Evaluation contexts and trails are represented inside-out. This is formalized with

the following definition of plugging terms inside contexts and trails:

•[e] = e (v$K)[e] = v $K[e]
(K e′)[e] = K[e e′]
(v K)[e] = K[v e] �[e] = e

(K $ e′)[e] = K[e $ e′] (K̂ · T )[e] = T [K̂[e]]

We define the operation of appending two evaluation contexts as follows:

K@• = K K@(v K ′) = v (K@K ′)
K@(K ′ e) = (K@K ′) e K@(K ′ $ e) = (K@K ′) $ e
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〈λx.e, K̂ · T 〉e ⇒ 〈K̂, λx.e, T 〉a 〈K̂ $ e, v, T 〉a ⇒ 〈e, (v$•) · K̂ · T 〉e
〈K̂′, K̂ · T 〉e ⇒ 〈K̂, K̂′, T 〉a 〈K̂ e, v, T 〉a ⇒ 〈e, (v K̂) · T 〉e
〈e1 e2, K̂ · T 〉e ⇒ 〈e1, (K̂ e2) · T 〉e 〈K̂′ K̂, v, T 〉a ⇒ 〈K̂′, v, K̂ · T 〉a
〈S0f.e, K̂ · T 〉e ⇒ 〈e[K̂/f ], T 〉e 〈(λx.e) K̂, v, T 〉a ⇒ 〈e[v/x], K̂ · T 〉e
〈e1 $ e2, K̂ · T 〉e ⇒ 〈e1, (K̂ $ e2) · T 〉e 〈(λx.e)$•, v, T 〉a ⇒ 〈e[v/x], T 〉e

〈K̂$•, v, T 〉a ⇒ 〈K̂, v, T 〉a
Fig. 1. Abstract machine for λ$

The operation of appending a closed context to an evaluation context is defined as
(v$K)@K ′ = v$(K@K ′).

We have three contraction rules:

(λx.e) v  e[v/x] (βv)
v′ $ v  v′ v ($v)

K̂[S0f.e] e[λx.K̂[x]/f ] ($/S0)

The first one is the familiar call-by-value beta-reduction. The second one is a generaliza-
tion of the 〈v〉 v rule used in λS0 . Indeed, when we interpret 〈v〉 in λ$ as a shorthand
for (λx.x) $ v, we have 〈v〉 = (λx.x) $ v  (λx.x) v  v. The last rule describes how
the shift0 operator captures the nearest enclosing context (with the delimiting dollar)
and reifies it as a function.

Finally, we define the reduction relation:

K[T [e]]→ K[T [e′]] iff e e′

The semantics defined above satisfies the following unique-decomposition property: for
every closed λ$ term e, either it is a value, or it is a stuck term of the form K[S0f.e],
or it can be uniquely decomposed into a context K, a trail T and a term e′ such that
e = K[T [e′]] and there exists a term e′′ such that e′  e′′.

2.3 The abstract machine for λ$

The abstract machine for λ$ (with values including closed contexts) is defined in Fig. 1.
It is very similar to the abstract machine for λS0 , as defined in [5] and [15]. The differ-
ence comes from the fact that the (closed) evaluation contexts of λ$ are delimited with
a dollar. This means that empty contexts are not really empty, but contain a terminating
value, which needs to be called. That is why instead of the following transition from the
abstract machine for λS0 :

〈•, v,K · T 〉a ⇒ 〈K, v, T 〉a

we have the following two for λ$:

〈(λx.e)$•, v, T 〉a ⇒ 〈e[v/x], T 〉e
〈K̂$•, v, T 〉a ⇒ 〈K̂, v, T 〉a
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x = λk.k x S0x.e = λx.e

λx.e = λk.k (λx.e) e1 $ e2 = λk.e1 (λv1.e2 v1 k)
e1 e2 = λk.e1 (λv1.e2 (λv2.v1 v2 k))

Fig. 2. CPS translation for λ$ (untyped)

τ ≤ τ ′ σ ≤ σ′

τ σ ≤ τ ′ σ′ α ≤ α
τ ′1 ≤ τ1 τ2 σ ≤ τ ′2 σ′

τ1
σ−→ τ2 ≤ τ ′1 σ′−→ τ ′2

ε ≤ ε
τ σ ≤ τ ′ σ′

ε ≤ [τ σ] τ ′ σ′
τ ′1 σ

′
1 ≤ τ1 σ1 τ2 σ2 ≤ τ ′2 σ′2

[τ1 σ1] τ2 σ2 ≤ [τ ′1 σ
′
1] τ
′
2 σ
′
2

Γ, x : τ1 ` x : τ1
VAR

Γ ` e : τ σ τ σ ≤ τ ′ σ′

Γ ` e : τ ′ σ′
SUB

Γ, x : τ1 ` e : τ2 σ
Γ ` λx.e : τ1 σ−→ τ2

ABS

Γ, x : τ1
σ−→ τ2 ` e : τ3 σ′

Γ ` S0x.e : τ1 [τ2 σ] τ3 σ′
SFT

Γ ` e1 : τ1
σ−→ τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2 σ
PAPP

Γ ` e1 : τ1
[τ′4 σ

′
4] τ′3 σ

′
3−−−−−−−−→ τ2 [τ

′
2 σ
′
2] τ
′
1 σ
′
1 Γ ` e2 : τ1 [τ

′
3 σ
′
3] τ
′
2 σ
′
2

Γ ` e1 e2 : τ2 [τ
′
4 σ
′
4] τ
′
1 σ
′
1

APP

Γ ` e1 : τ1
σ−→ τ2 Γ ` e2 : τ1 [τ2 σ] τ3 σ

′

Γ ` e1 $ e2 : τ3 σ
′ PDOL

Γ ` e1 : τ1
σ−→ τ2 [τ

′
2 σ
′
2] τ
′
1 σ
′
1 Γ ` e2 : τ1 [τ2 σ] τ3 [τ

′
3 σ
′
3] τ
′
2 σ
′
2

Γ ` e1 $ e2 : τ3 [τ
′
3 σ
′
3] τ
′
1 σ
′
1

DOL

Fig. 3. The type system for λ$ (with subtyping)

2.4 The CPS translation for λ$

The CPS translation is defined in Fig. 2. It is very similar to the untyped translation for
λS0 , defined in [15]. The translation for the reset0 operator in the original translation is
as follows:

〈e〉 = e (λx.λk.k x)

In λ$, the translation of 〈e〉 = (λx.x) $ e is as follows:

(λx.x) $ e = λk.(λk.k (λx.λk.k x)) (λv.e v k) =βη e (λx.λk.k x)

2.5 The type system for λ$

We introduce the syntactic categories of types and effect annotations:

types τ ::= α | τ σ−→ τ
annotations σ ::= ε | [τ σ] τ σ
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The type system is shown in Fig. 3. Effect annotations have no meaning by themselves;
they should be understood together with types they annotate. The typing judgment Γ `
e : τ ′1 [τ1 σ1] τ

′
2 . . . τ

′
n [τn σn] τ (we omit ε for brevity) can be read as follows: ‘the

term e in a typing context Γ evaluates to a value of type τ when plugged in a trail of
contexts of types τ ′1

σ1−→ τ1, . . . , τ
′
n

σn−→ τn’. The judgment Γ ` e : τ means ‘the term e
in a typing context Γ evaluates to a value of type τ without observable control effects’.
Function types also have effect annotations, which can be thought to be associated with
the return type.

We made two changes to the type system presented in [15]:

1. The rule for pure application has been generalized. This modification does not
change the theory, because both cases of the new rule (with σ empty or non-empty)
are derivable using the original rules. Yet some proofs are easier with the new rule.

2. The typing rule for reset0 has been replaced with two rules for $. When we take
〈e〉 = (λx.x) $ e, the original rule for reset0 can be derived from them.

This means that the type system in Fig. 3 is a conservative extension of the original type
system for shift0/reset0.

3 The CPS hierarchy—the calculus λH
←↩

For the purpose of formalizing the connection between shift0/reset0 and the CPS hier-
archy, for our second language we use the hierarchy of flexible delimited-control op-
erators, as defined in the article by Biernacka et al. [3]. The main reason is that it has
a very expressive type system, defined in the same article, which we relate to the type
system of λ$. The language expresses the original CPS hierarchy, as defined in [8], so
the results still hold for the original hierarchy.

In this section, we define the syntax, reduction semantics, abstract machine, CPS
translation and type system of λH

←↩. We try to keep the description succinct; more de-
tailed description can be found in [3].

3.1 Syntax and semantics of λH
←↩

We define the syntactic categories of terms, values, coterms (which represent evaluation
contexts), evaluation contexts and programs:

terms e ::= x |λx.e | e e | 〈e〉i | Sik1 . . . ki.e | (h1, . . . , hi)←↩i e
values v ::= λx.e
coterms hi ::= ki |Ei
level 1 contexts E1 ::= •1 |E1 e | v E1 | (E1, . . . , Ei)←↩i E1

level > 1 contexts Ei ::= •i |Ei.Ei−1
level n programs p ::= 〈e, E1, . . . , En+1〉
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〈λx.e, E1, . . . , En+1〉e ⇒ 〈λx.e, E1, . . . , En+1〉a
〈e1 e2, E1, . . . , En+1〉e ⇒ 〈e1, E1 e2, E2, . . . , En+1〉e

〈(E′1, . . . , E′i)←↩i e, E1, . . . , En+1〉e ⇒ 〈e, (E′1, . . . , E′i)←↩i E1, E2, . . . , En+1〉e
〈〈e〉i, E1, . . . , En+1〉e ⇒ 〈e, •1, . . . , •i, Ei+1.(Ei. . . . (E2.E1)),

Ei+2, . . . , En+1〉e
〈Sik1, . . . , ki.e, E1, . . . , En+1〉e ⇒ 〈e[E1/k1] . . . [Ei/ki], •1, . . . , •i,

Ei+1, . . . , En+1〉e
〈v,E1 e2, E2, . . . , En+1〉a ⇒ 〈e2, v E1, E2, . . . , En+1〉e

〈v, (λx.e)E1, E2, . . . , En+1〉a ⇒ 〈e[v/x], E1, E2, . . . , En+1〉e
〈v, (E′1, . . . , E′i)←↩i E1, E2, . . . , En+1〉a ⇒ 〈v,E′1, . . . , E′i, Ei+1.(Ei. . . . (E2.E1)),

Ei+2, . . . , En+1〉a
〈v, •i, Ei+1, . . . , En+1〉a ⇒ 〈v,Ei+1, . . . , En+1〉a

〈v,Ei.(Ei−1. . . . (E2.E1)), Ei+1, . . . , En+1〉a ⇒ 〈v,E1, E2, . . . , En+1〉a

Fig. 4. Abstract machine for λH
←↩

Plugging terms inside evaluation contexts is defined as follows:

•i[e] = e
(E1 e

′)[e] = E1[e e
′]

(v E1)[e] = E1[v e]
((E′1, . . . , E

′
i)←↩i E1)[e] = E1[(E1, . . . , Ei)←↩i e]
(Ei.Ei−1)[e] = Ei[〈Ei−1[e]〉i−1]

The syntactic category of programs exists for the purpose of defining the reduction
semantics. The plug function defined below reconstructs the term represented by a given
program tuple:

plug 〈e, E1 e
′, E2, . . . , En+1〉 = plug 〈e e′, E1, E2, . . . , En+1〉

plug 〈e, v E1, E2, . . . , En+1〉 = plug 〈v e,E1, E2, . . . , En+1〉
plug 〈e, (E′1, . . . , E′i)←↩i E1, E2, . . . , En+1〉 = plug 〈(E′1, . . . , E′i)←↩i e,

E1, E2, . . . , En+1〉
plug 〈e, •1, . . . , •i, Ei+1.(Ei. . . . (E2.E1)),

Ei+2, . . . , En+1〉 = plug 〈〈e〉i, E1, . . . , En+1〉
plug 〈e, •1, . . . , •n+1〉 = 〈e〉n

Finally, we define the reduction semantics as follows:

〈(λx.e) v,E1, . . . , En+1〉 → 〈e[v/x], E1, . . . , En+1〉
〈Sik1 . . . ki.e, E1, . . . , En+1〉 → 〈e[E1/k1] . . . [Ei/ki], •1, . . . , •i,

Ei+1, . . . En+1〉
〈〈v〉i, E1, . . . , En+1〉 → 〈v,E1, . . . , En+1〉

〈(E′1, . . . , E′i)←↩i v,E1, . . . , En+1〉 → 〈v,E′1, . . . , E′i, Ei+1.(Ei. . . . (E2.E1)),
Ei+2, . . . En+1〉

3.2 The abstract machine for λH
←↩

The abstract machine is defined in Fig. 4.
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x = λk.k x

λx.e = λk.k (λx.e)

〈e〉i = λk1. . . . λki+1.e θ i. . . θ
(λv.k1 v k2 . . . ki+1)

Sik1 . . . ki.e = λk1. . . . λki.e θ i. . . θ

(h1, . . . , hi)←↩i e = λk.e (λv.λk2. . . . λki+1.h1 v h2 . . . hi

(λw.k w k2 . . . ki+1))

k = k
•i = θ

E1 e = λv.e (λw.v wE1)

v E1 = λw.v∗ wE1

(E1, . . . , Ei)←↩i E′1 = λv.λk2. . . . λki+1.E1 v E2 . . . Ei

(λw.E′1 w k2 . . . ki+1)

Ei.Ei−1 = λv.Ei−1 v Ei

(λx.e)∗ = λx.e

where θ = λx.λk.k x

Fig. 5. CPS translation for λH
←↩ (eta-reduced)

3.3 The CPS translation for λH
←↩

The CPS translation is defined in Fig. 5. It is presented in eta-reduced form. The trans-
lated terms can be eta-expanded back to the form presented in [3].

3.4 The type system for λH
←↩

We introduce the syntactic categories of types and context types:

types τ ::= α | τ → [δ1, . . . , δn+1]
level ≤ n context types δi ::= τ B δi+1 B . . .B δn+1

level n+ 1 context types δn+1 ::= ¬τ

The type system for terms is defined in Fig. 6. For lack of space, we omit the typing
rules for coterms (they do not introduce any new essential concepts). The entire type
system can be found in [3].

4 Relating λ$ to λH
←↩

In this section we relate the CPS translations, type systems, abstract machines, and
reduction semantics of λ$ and λH

←↩. This is the main section of the article.

4.1 CPS translations

We present in Fig. 7 a translation from λH
←↩ to λ$. The translation represents the control

operators of the CPS hierarchy with shift0/dollar, and refunctionalizes the evaluation
contexts present in the reduction semantics of λH

←↩. We arrived at this translation by try-
ing to match the CPS translations of λH

←↩ and λ$ and to capture the operational meaning
of the CPS hierarchy’s control operators:
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Γ, x : τ ;∆ `n x : τ B δ2 . . .B δn+1, δ2 . . . δn+1

Γ, x : τ ;∆ `n e : δ′1, . . . δ
′
n+1

Γ ;∆ `n λx.e : (τ → [δ′1 . . . δ
′
n+1])B δ2 . . .B δn+1, δ2 . . . δn+1

Γ ;∆ `n e0 : (τ → [δ1 . . . δn+1])B δ
′′
2 . . .B δ

′′
n+1, δ

′
2 . . . δ

′
n+1

Γ ;∆ `n e1 : τ B δ2 . . .B δn+1, δ
′′
2 . . . δ

′′
n+1

Γ ;∆ `n e0 e1 : δ1, δ
′
2 . . . δ

′
n+1

I1(δ′1) . . . Ii(δ′i) Γ ;∆ `n e : δ′1 . . . δ
′
i, (τ B δi+2 . . .B δn+1), δ

′
i+2 . . . δ

′
n+1

Γ ;∆ `n 〈e〉i : τ B δ2 . . .B δn+1, δ2 . . . δi+1, δ
′
i+2 . . . δ

′
n+1

I1(δ′1) . . . Ii(δ′i) Γ ;∆, k1 : δ1, . . ., ki : δi `n e : δ′1 . . . δ
′
i, δi+1 . . . δn+1

Γ ;∆ `n Sik1 . . . ki.e : δ1, δ2 . . . δn+1

δ1 = τ B δ2 . . .B δn+1 δi+1 = τ ′ B δ′i+2 . . .B δ
′
n+1

Γ ;∆ `n h1 : δ1 . . . Γ ;∆ `n hi : δi
Γ ;∆ `n e : τ B δ′′2 B . . .B δ

′′
i+1 B δi+2 B . . .B δn+1, δ

′
2, . . . δ

′
n+1

Γ ;∆ `n (h1 . . . hi)←↩i e : τ ′ B δ′′2 B . . .B δ′′i+1 B δ
′
i+2 B . . .B δ

′
n+1, δ

′
2 . . . δ

′
n+1

Ii(δi) := ∃τ, δi+2, . . . , δn+1.δi = τ B (τ B δi+2 B . . .B δn+1)B δi+2 B . . .B δn+1

Fig. 6. The type system for level n λH
←↩ terms

– The operator 〈e〉n affects only the top n + 1 contexts. It resets the top n contexts,
and pushes the original contexts down to the n+ 1-th context. We can achieve that
in λ$ by first capturing the n+ 1 contexts by using the shift0 operator n+ 1 times,
pushing the extended n+1-th context using $, and then pushing the empty context
using reset0 n times.

– The operator (k1, . . . , kn) ←↩n e works very similar to 〈e〉n, only instead of reset-
ting the top n contexts, it replaces them with the given contexts k1, . . . , kn. In λ$,
instead of pushing empty contexts, we push the given contexts using $.

– The operator Snk1 . . . kn.e affects only the top n contexts. It captures them and
replaces them by empty contexts. We can achieve that in λ$ by using the shift0
operator n times, and then using reset0 n times.

We have the following theorem:

Theorem 1. For every term e in λH
←↩, we have e =βη JeK.

Proof. By induction and simple calculation. It is easy to see that following hold:

(λx.e) $ e′ =βη e′ (λx.e) x $ e =βη e x

〈e〉 =βη e θ kn $ . . . $ k1 $x =βη k1 x k2 . . . kn

With these, showing the theorem is straightforward.
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JxK = x
Je1 e2K = Je1K Je2K
Jλx.eK = λx.JeK
J〈e〉iK = S0f1. . . .S0fi+1.(λx.fi+1 $ . . . $ f1 $x) $ 〈 i. . .〈JeK〉 . . .〉

J(h1, . . . , hi)←↩i eK = S0f1. . . .S0fi+1.(λx.fi+1 $ . . . $ f1 $x) $
JhiKi $ . . . $ Jh1K1 $ JeK

JSik1 . . . ki.eK = S0k1. . . .S0ki.〈 i. . .〈JeK〉 . . .〉

JkiKi = ki
JEiKi = λx.(λy.JEiKc

i(y)) $x

J•iKc
i(x) = 〈x〉

JE1 eKc
1(x) = JE1Kc

1(x JeK)
Jv E1Kc

1(x) = JE1Kc
1(JvKx)

J(E1, . . . , Ei)←↩i E′1Kc
1(x) = JE′1Kc

1((λy.S0f1. . . .S0fi+1.(λz.fi+1 $ . . . $ f1 $ z) $
JEiKn $ . . . $ JE1K1 $ y)x)

JEi.Ei−1Kc
i(x) = (λy.JEiKc

i(y)) $ JEi−1Kc
i−1(x)

J〈e, E1, E2, . . . , En+1〉K = (λx.JEnKc
n+1(x)) $ . . . $ (λx.JE1Kc

1(x)) $ JeK

Fig. 7. Translation of λH
←↩ to λ$

4.2 Type systems

We use the following convention:

τ ′−→ (τ σ) = τ ′ σ−→ τ

I.e. annotating the type on the right side of the function arrow means the same as an-
notating the function arrow. Also, we define the operation of appending a function type
and an annotated type as follows:

(τ1
σ−→ τ2)@ τ ′ σ′ = τ1 [τ2 σ] τ

′ σ′

The meaning of this definition comes from the fact that annotated types describe types
of the individual contexts on a trail.

We define the translation from λH
←↩ types to λ$ types as follows:

JαK = α
JS → [C1, . . . , Cn+1]K = JSK−→ JC1, . . . , Cn+1K

JCi, . . . , Cn,¬SK = JCiK@ . . . @ JCnK@ JSK
JS B Ci+1 B . . .B Cn+1K = JSK−→ JCi+1, . . . , Cn+1K

Theorem 2. If Γ `n e : C1, . . . , Cn+1 in λH
←↩, then JΓ K ` JeK : JC1, . . . , Cn+1K in λ$.

Proof. Cases for variables and lambda abstractions are trivial and follow from the fact
that for every τ , τ ′ and σ, τ ′ ≤ τ ′ [τ σ] τ σ.

4.3 Reduction semantics

The reduction semantics of λH
←↩ and λ$ cannot be related directly. The reason is that in

the λH
←↩ language, evaluation ‘goes straight through’ the 〈e〉i operators, but their transla-

tion to λ$ has operational meaning. E.g., the term 〈(λx.x) (λx.x)〉1 reduces in one step
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JxK = x
Je1 e2K = Je1K Je2K
Jλx.eK = λx.JeK
J〈e〉iK = S0f1. . . .S0fi+1.(λx.fi+1 $ . . . $ f1 $x) $ 〈 i. . .〈JeK〉 . . .〉

J(k1, . . . , kn)←↩i eK = S0f1. . . .S0fi+1.(λx.fi+1 $ . . . $ f1 $x) $
JkiKi $ . . . $ Jk1K1 $ JeK

JSik1 . . . ki.eK = S0k1. . . .S0ki.〈 i. . .〈JeK〉 . . .〉

JkKi = k
JEiKi = JEiKc

i

J•iKc
i = •̂

JE1 eKc
1 = JE1Kc

1 JeK
Jv E1Kc

1 = JvK JE1Kc
1

J(E1, . . . , Ei)←↩i E′1Kc
1 = (λy.S0f1. . . .S0fi+1.(λz.fi+1 $ . . . $ f1 $ z) $

JEiKi $ . . . $ JE1K1 $ y) JE′1Kc
1

JEi.(Ei−1.(. . . Ej+1.Ej))Kc
i = (λx.JEiKc

i $ JEi−1Kc
i−1 $ . . . $ JEj+1Kc

j+1 $ JEjKc
j $x)$•

J〈e, Ek, Ek+1, . . . , En+1〉eK = 〈JeK, JEkKc
k · JEk+1Kc

k+1 · . . . · JEn+1Kc
n · •̂〉e

J〈v,Ek, Ek+1, . . . , En+1〉aK = 〈JvK, JEkKc
k · JEk+1Kc

k+1 · . . . · JEn+1Kc
n · •̂〉a

Fig. 8. Translation of λH
←↩ to λ$ (abstract machines)

to 〈λx.x〉1, whereas evaluation of the translated program 〈〈(λx.x) (λx.x)〉1, •1, •2〉
proceeds as follows:

(λx.〈x〉) $ (λx.〈x〉) $S0f1.S0f2.(λx.f2 $ f1 $x) $ 〈(λx.x) (λx.x)〉
→∗ (λx.(λx.(λx.〈x〉) $x) $ (λx.(λx.〈x〉) $x) $x) $ 〈λx.x〉
6= (λx.〈x〉) $ (λx.〈x〉) $S0f1.S0f2.(λx.f2 $ f1 $x) $ 〈λx.x〉

Interestingly, using a refocused [4] version of the λH
←↩ reduction semantics eliminates

this discrepancy.
We present below how another λH

←↩ term evaluates:

〈S1k.(k)←↩1 λx.x〉1 → 〈(•1)←↩1 λx.x〉1 → 〈〈λx.x〉1〉1

Its translation evaluates as follows:

(λx.〈x〉) $ (λx.〈x〉) $S0k.〈S0k1.S0k2.(λx.k2 $ k1 $x) $ k $λx.x〉
→∗ (λx.〈x〉) $ 〈S0k1.S0k2.(λx.k2 $ k1 $x) $ (λx.(λx.〈x〉) $x) $λx.x〉
→∗ ((λx.(λx.〈x〉) $x) $ (λx.〈x〉) $x) $ (λx.(λx.〈x〉) $x) $λx.x

We see that the terms representing the evaluation contexts get more and more compli-
cated. This is because in the reduction semantics for λ$, removing a context from the
trail and then pushing it back is not the same as just leaving it there:

v $S0k.k $ e→ (λx.v $x) $ e 6= v $ e

However, it is easy to see that (λx.v $x) $ e =βη v $ e. What is more, we have:

(λx.K̂[x]) $ e =βη K̂[e].
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Let us define ≈ as the smallest congruence containing (λx.Ê[x]) $ e ≈ Ê[e]. Then, if
we define the relation of reduction modulo this congruence:

e1 →≈ e2 iff exists e′1, e
′
2 such that e1 ≈ e′1 → e′2 ≈ e2,

we obtain the following theorem:

Theorem 3. Suppose that 〈e, E1, . . . , En+1〉  〈e′, E′1, . . . , E′n+1〉. Then we have
J〈e, E1, . . . , En+1〉K→≈∗J〈e′, E′1, . . . , E′n+1〉K.

Another way to resolve this discrepancy is to change the reduction semantics so as
not to refunctionalize the closed contexts on capture, and expand them when on the left
side of the dollar:

K̂ v  K̂[v] K̂[S0f.e] e[K̂/f ] K̂ $ e K̂[e]

4.4 Abstract machines

Relating the abstract machines for the two languages requires a modified translation
from λH

←↩ to λ$. The idea behind the translation is that we want to ‘emulate’ the behavior
of the control operators of λH

←↩ (as most clearly described by the abstract machine in
Fig. 4) by step-by-step manipulation of the trail. The translation, as presented in Fig. 8,
differs from the previous one in that it does not refunctionalize the evaluation contexts,
translating them to closed contexts of λ$.

There is a minor mismatch between the abstract machines of λH
←↩ and λ$. The reason

is that shifting a context from the trail and then pushing it back with $ alters the trail to
a different, but observationally indistinguishable state:

〈S0x.x $ e, K̂ · K̂ ′ ·T 〉e ⇒ 〈K̂ $ e, K̂ ′ ·T 〉e ⇒∗ 〈K̂ ′ $ e, K̂, T 〉a ⇒ 〈e, (K̂$•) · K̂ ′ ·T 〉e

To abstract this detail away, let us define ≈ to be a family of congruences defined for
λ$ expressions, contexts, closed contexts and abstract machines, containing K̂$K ′ ≈
K̂@K ′. We get the following theorem:

Theorem 4. For every two λH
←↩ abstract machine configurationsm1 ⇒∗ m2, then there

exists a λ$ machine configuration m such that Jm1K⇒∗ m ≈ Jm2K in λ$.

Because the abstract machine for λH
←↩ uses n + 1 evaluation contexts for the n-th

level of the hierarchy, we need to enclose the translated program in n+1 resets to match
the initial configurations of the machines: JeKn = 〈n+1. . . 〈JeK〉 . . .〉. Thus, we have:

〈JeKn, •̂〉e ⇒∗ 〈JeK, •̂ · n+2. . . · •̂〉e = J〈e, •1, . . . , •n+1〉eK

5 Examples

In this section we show example programs to display the correspondence between λH
←↩

and λ$. The programming languages used are straightforward extensions of λH
←↩ and λ$

to an ML-like language.
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fail () = S1ks.()
amb a b = S1ks.(ks)←↩1 a; (ks)←↩1 b
emit a = S2kskf .a :: (ks, kf )←↩2 ()
run f = 〈〈emit (f ())〉1; []〉2

fail () = S0ks.()
amb a b = S0ks.ks a; ks b
emit a = S0ks.S0kf .a :: (kf $ ks ())
run f = 〈〈emit (f ())〉; []〉

Fig. 9. Implementation of amb and emit in λH
←↩ (left) and λ$ (right)

5.1 Nondeterminism

One of the classic applications of the CPS hierarchy is an implementation of Mc-
Carthy’s amb non-deterministic choice operator, together with a function for returning
results of the non-deterministic computation [8]. The implementation uses two levels
of the CPS hierarchy, where the two continuations operate as the success and failure
continuations. It is shown in Fig. 9, on the left.

– The fail function shifts the success continuation, leaving only the failure continua-
tion to be evaluated.

– The ambiguous choice amb operator first shifts the success continuation, and eval-
uates it twice with the two possible return values. The sequence gets pushed to the
failure continuation.

– The emit function shifts both the success and failure continuations, adds a new
value to the result list, and restores the shifted continuations. The emitted value is
pushed to the third continuation.

– The run function resets two levels of continuations, freeing them to be used as
the success and failure continuations. It then initializes the failure continuation to
return the empty list, and the success continuation to emit the final value. Then it
calls the body of the backtracking computation.

A program using these functions to solve the n-queens problem is shown in Fig. 10.
The functions can be translated to λ$ using the translation of Fig. 7:

fail () = S0ks.〈()〉
amb a b = S0ks.〈S0k1.S0k2.(λx.k2 $ k1 $x) $ ks $ a ;

S0k1.S0k2.(λx.k2 $ k1 $x) $ ks $ b〉
emit a = S0ks.S0kf .〈〈a ::
S0k1.S0k2.S0k3.(λx.k3 $ k2 $ k1 $x) $ kf $ ks $ ()〉〉

run f = S0k1.S0k2.S0k3.(λx.k3 $ k2 $x) $
〈〈S0k1.S0k2.(λx.k2 $ k1 $x) $ 〈emit (f ())〉; []〉〉

The translation follows exactly the semantics of the original functions, but are need-
lessly complicated by the code ensuring that the appropriate contexts end up on the right
positions on the context stack. If we relax those requirements, we can reimplement the
four functions in a very similar form to the original definitions (Fig. 9, right).

Even though the definitions are similar, the semantics of this new implementation is
very different. We demonstrate this below using abstract machine runs of the λH

←↩ and
λ$ versions of the fail and emit functions. It’s easy to check the other two.
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ambList [] = fail ()
ambList (h :: t) = amb h (ambList t)

nQueens n = let f 0 l = l
f k l = let ok [] = true

ok v x (h :: t) =
v 6= h and k + v − 1 6= x+ h and
k − v − 1 6= x− h and ok v (x+ 1) t

in let v = ambList [0..n− 1]
in if ok v k l

then f (k − 1) (v :: l)
else fail ()

in run (λ().f n [])

Fig. 10. Example: solving the n-queens problem

– The fail function in λH
←↩ replaces the success continuation with the empty context,

which is then activated before the failure continuation:

〈S1ks.(), Es, Ef, E3〉e ⇒ 〈(), •1, Ef, E3〉e ⇒ 〈(), •1, Ef, E3〉a ⇒ 〈(), Ef, E3〉a

In λ$, the success continuation is removed, the failure continuation is run directly:

〈S0ks.(), K̂s · K̂f · T 〉e ⇒ 〈(), K̂f · T 〉e ⇒ 〈K̂f, (), T 〉a

– The emit function in λH
←↩ resets the top two contexts when capturing the success

and failure continuations, and these empty contexts are pushed to the third context,
along with the emitted value, when restoring the success and failure continuations:

〈S2kskf .a :: (ks, kf )←↩2 (), Es, Ef, E3〉e ⇒ 〈a :: (Es, Ef)←↩2 (), •1, •2, E3〉e
⇒ 〈(Es, Ef)←↩2 (), a :: •1, •2, E3〉e ⇒∗ 〈(), Es, Ef, E3.(•2.(a :: •1))〉a

In λ$, the emitted value is placed directly on the third context:

〈S0ks.S0kf .a :: (kf $ ks ()), K̂s · K̂f · K̂ · T 〉e
⇒∗ 〈a :: (K̂f $ K̂s ()), K̂ · T 〉e ⇒ 〈K̂f $ K̂s (), (a :: K̂) · T 〉e
⇒ 〈K̂s (), (K̂f$•) · (a :: K̂) · T 〉e ⇒∗ 〈K̂s, (), (K̂f$•) · (a :: K̂) · T 〉a

5.2 Sorting

In this section we show that there are programs in λ$ which can use an arbitrary num-
ber of contexts on the context stack, and therefore an analogous program with direct
correspondence between the trail and the layered contexts cannot be written in the CPS
hierarchy directly.2 This would hold even for a hierarchy with no maximum level, be-
cause a program in the CPS hierarchy can access only a finite number of layers.

2 The λH
←↩ language can macro-express λ$, because it contains the ordinary shift/reset operators,

which were shown to be able to macro-express λS0 [15, 16]. However, such a simulation would
not lead to a program of a structure resembling the one presented in Fig. 11.
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csort l = let insert a =
let cinsert k = S0f.case f [] of
[]→ 〈〈a :: k ()〉〉
[b]→ if a < b then cinsert (λx.f $ k x) else f $ 〈a :: k ()〉

in S0k. cinsert k
in 〈〈 foldr (λx.λl′. insert x; l′ ) [] l 〉〉

Fig. 11. Example: insertion sort on the context stack

The example program, shown in Fig. 11, implements the insertion sort algorithm
which uses the context stack to store and manipulate the output list. The main idea is
that each element of the output list is contained inside a separate context on the context
stack. The empty context marks the end of the output list. The algorithm runs the insert
helper function for each element of the input list, and then returns [] to finally construct
the result. The insert function shifts contexts from the context stack until it finds the
right place for the element being inserted. Then it puts the element there in a new
context and puts back the contexts it shifted.

The program uses n + 2 contexts on the context stack, where n is the size of the
input list. So it cannot be typed using the type system in Fig. 3.

6 Conclusion and future work

We have made and formalized an observation that the delimited-control operators shift0
and reset0 are expressive enough to encode the control operators in the original CPS
hierarchy. We have also shown that in programming practice, shift0 and reset0 can do the
job of the CPS hierarchy and more. These results demonstrate a considerable expressive
power of shift0 and reset0 on one hand. On the other hand, they open a possibility of
using the presented translations, e.g., for implementing the hierarchy in terms of any
implementation of shift0 and reset0.

Another step in the programme of investigating shift0 and reset0 is a realistic im-
plementation on top of an existing language such as Scala, using the selective CPS
translation we have devised in our previous work [15] along with Scala type annota-
tions. Of more theoretical importance, we plan to build a behavioral theory for shift0
and reset0 following recent developments of the second author and Lenglet [6]. We are
also in the course of constructing axiomatizations of shift0 and reset0 that are sound and
complete with respect to the CPS translations (typed and untyped).
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