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Abstract
We present a type system with subtyping for first-class delimited
continuations that generalizes Danvy and Filinski’s type system for
shift and reset by maintaining explicit information about the types
of contexts in the metacontext. We exploit this generalization by
considering the control operators known as shift0 and reset0 that
can access arbitrary contexts in the metacontext. We use subtyping
to control the level of information about the metacontext the ex-
pression actually requires and in particular to coerce pure expres-
sions into effectful ones. For this type system we prove strong type
soundness and termination of evaluation and we present a provably
correct type reconstruction algorithm. We also introduce two CPS
translations for shift0 and reset0: one targeting the untyped lambda
calculus, and another—type-directed—targeting the simply-typed
lambda calculus. The latter translation preserves typability and is
selective in that it keeps pure expressions in direct style.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Control structures;
F.3.3 [Logics and Meanings of Programs]: Studies of Program Con-
structs

General Terms Languages, Theory

Keywords Delimited Continuation, Continuation-Passing Style,
Type System, Subtyping

1. Introduction
Control operators for first-class delimited continuations, introduced
independently by Felleisen [17] and by Danvy and Filinski [13, 14],
serve to abstract control in functional programming languages by
reifying the current continuation as a first-class value. However,
in contrast to the well-known abortive control operator call/cc
present in Scheme [23] and SML/NJ [20], delimited-control oper-
ators model composition of delimited (partial) continuations rather
than jumps to undelimited continuations. In particular, while call/cc
offers the programmer the power of the continuation-passing style
(CPS) in direct style, Danvy and Filinski’s shift and reset offer
the power of the continuation-composing style (CCS) characteris-
tic of the success-failure continuation model of backtracking [14].
It has been shown by Filinski that shift and reset play an impor-
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tant role among the most fundamental concepts in the landscape
of functional programming—a language equipped with shift and
reset is monadically complete, i.e., any computational monad can
be represented in direct style with the aid of these control op-
erators [18, 19]. A long list of non-trivial applications of delim-
ited continuations includes normalization by evaluation and partial
evaluation [3, 12, 15], mobile computing [33], linguistics [4], and
operating systems [25] to name but a few.

The intuitive semantics of delimited-control operators such as
shift (S) and reset (〈〉) can be explained as follows. When the ex-
pression Sk.e is evaluated, the current—delimited by the nearest
dynamically-enclosing reset—continuation is captured, i.e., it is re-
moved and the variable k is bound to it. When later k is applied to a
value, the then-current continuation is composed with the captured
continuation. For example, the following expression (where ++ is
string concatenation):

“Alice” ++ 〈“ has ” ++
(Sk.(k “a dog ”) ++ “and the dog” ++ (k “a cat.”))〉

evaluates to the string “Alice has a dog and the dog has a cat.”
In their first article on delimited continuations [13], Danvy and

Filinski briefly described a variant of shift and reset, known as
shift0 (S0) and reset0, where the operational semantics of the con-
trol delimiter reset0 coincides with that of reset, but shift0, when
capturing a continuation, instead of resetting it, replaces it with
the inner-most delimited continuation pending on the metacontin-
uation. In other words, in contrast to shift, shift0 removes the con-
trol delimiter along with the captured continuation, which makes it
possible to use shift0 to access continuations arbitrarily deep in the
metacontinuation by repeatedly shifting continuations. For exam-
ple, the following expression:

〈“Alice” ++ 〈“ has ” ++ (S0k1.S0k2.“A cat” ++ (k1(k2 “.”))〉〉

evaluates to the string “A cat has Alice.”, since the second shifting
has access to the continuation that prepends the string “Alice”
to a given string. The ability to access arbitrary contexts (a first-
order representation of continuations [9]) in the metacontext (a
first order representation of the metacontinuation [9])) makes S0
a particularly interesting and powerful control operator.

In the untyped setting, shift0 and reset0 have been investigated
by Shan [32], who presented a CPS translation for shift0 and reset0
that conservatively extends Plotkin’s call-by-value CPS transla-
tion [28] and that leads to a simulation of shift0 and reset0 in terms
of shift and reset. This CPS translation and simulation hinge on
the requirement that the continuations be represented by recursive
functions taking a list of continuations as one of their arguments.
(The converse simulation is trivial—one simply resets the body of
each shift0 expression.)

In a typed setting, Kiselyov and Shan [26] introduced a sub-
structural type system for shift0 and reset0 that abstractly interprets



(in the sense of abstract interpretation of Cousot and Cousot [11])
small-step reduction semantics of the language. Their type system
allows for continuation answer type modifications and, in a sense,
extends Danvy and Filinski’s type system which is the most ex-
pressive of the known monomorphic type systems for shift and re-
set. Judgments in Danvy and Filinski’s type system have the form
Γ;B ` e : A;C, with the interpretation that expression e can
be plugged into a context expecting a value of type A and produc-
ing a value of type B, and a metacontext expecting a value of type
C, where B and C can be different types. Hence, expressions are
allowed to change the answer type of the context in which they
are embedded. For example, the expression 〈1 + Sk. true〉 is well
typed in this type system. The typing rules of Danvy and Filinski’s
type system have been derived from a left-to-right call-by-value
evaluator in continuation-passing style [13].

In this article we present a new type-and-effect system for
shift0 and reset0 that generalizes Danvy and Filinski’s original type
system for shift and reset. To this end, we first introduce a new
CPS translation for shift0 and reset0 which conservatively extends
Plotkin’s call-by-value CPS translation and which turns out to be
close to a curried version of Shan’s CPS translation [32]. From
this CPS translation, we derive an abstract machine and a type-
and-effect system à la Danvy and Filinski which we refine by al-
lowing for subtyping of types and effect annotations. We show that
the type system with subtyping we present satisfies several cru-
cial properties such as strong type soundness and termination of
evaluation, and we describe and prove correct a type inference al-
gorithm for this type system. Compared to Kiselyov and Shan’s
type system [26], the one presented here is more conventional, it
corresponds directly to the CPS translation it has been obtained
from, and it heavily relies on subtyping built in the system. Fur-
thermore, we take advantage of the fact that our type system dis-
tinguishes between pure and effectful expressions and we present
a selective type-directed CPS translation from the language with
shift0 and reset0 to the simply-typed λ-calculus that transforms to
CPS only effectful expressions, leaving pure ones in direct style.
We also show that Danvy and Filinski’s original type system for
shift and reset can naturally be embedded into our type system, and
that when restricted, our type system gives rise to a type system à la
Danvy and Filinski with subtyping for shift and reset. Similarly, the
CPS translations for shift0 and reset0 that we present induce new
CPS translations for shift and reset.

It is worth stressing that the subtyping mechanism of our type
system addresses one of the subtle limitations of Danvy and Fil-
inski’s type system concerning the typing rules for shift and λ-
abstraction:

Γ, f : A F −→ FB;E ` e : E;C

Γ;B ` Sf.e : B;C

Γ, x : A;C ` e : B;D

Γ;B ` λx.e : AC −→DB;C

According to the above rule for shift, the type system assigns the
captured continuation a functional type with a single, chosen up-
front answer type (F ), which prevents it from being resumed in
contexts with a different answer type. But the continuations cap-
tured by shift do not modify the context of their resumption, and
therefore they should be applicable in any context. One way to deal
with this shortcoming is to introduce polymorphism into the lan-
guage, as in Asai and Kameyama’s work [2]. In their type system,
the continuation captured by shift is assigned a functional type with
polymorphic answer type. Another approach is to distinguish be-
tween continuations and functions in such a way that a captured
continuation is given a type which does not mention the answer
type [6]. In this approach, additional syntactic construct—a con-
tinuation application, distinct from function application—has to be

added to the language. Unfortunately, in this type system, functions
without control effects (when C and D are the same arbitrary type
in the rule for λ-abstraction) still have an answer type chosen up-
front and are subject to the same restrictions as described above.

In a way, one can treat the continuation types from [6] as more
general than function types—continuations can be applied in any
context, whereas functions can only be applied in contexts with
matching answer types. The type system of this article removes
the syntactic distinction between continuations and functions by
the means of subtyping of effect annotations. The subtyping rela-
tion allows functions to be called when more is known about the
types of the contexts in the metacontext than the function actually
requires. In particular, a pure function, possibly representing a cap-
tured continuation, can be arbitrarily coerced into an effectful one.

The rest of this article is structured as follows. In Section 2.1,
we introduce the syntax and reduction semantics for the call-by-
value λ-calculus with shift0 and reset0. In Section 2.2, we present
a CPS translation for the language and we relate it to the reduc-
tion semantics. In Section 2.3, we derive a type-and-effect system
à la Danvy and Filinski from the CPS. In Sections 3.1 and 3.2, we
introduce subtyping to the type system and we prove several stan-
dard properties for the system, including strong type soundness. In
Section 3.3, we use a context-based method of reducibility pred-
icates to prove termination of evaluation of well-typed programs.
In Section 3.4, we present and prove correct a type inference al-
gorithm for our type system. In Section 3.5, we present a selective
type-directed CPS translation for the language. In Section 4, we
consider some practical applications of the presented language. In
Section 5, we show how the type system for shift0 and reset0 can
be restricted to Danvy and Filinski’s type system for shift and reset,
and we discuss the CPS translations for shift and reset induced by
the presented CPS translations for shift0 and reset0. In Sections 6
and 7, we discuss related and future work and we conclude in Sec-
tion 8.

The article is accompanied by a Haskell implementation of the
presented programming language and by a Twelf formalization of
its metatheory, both available at http://www.tilk.eu/shift0/.

2. The language λS0

2.1 Syntax and semantics
In this subsection, we define the language we will be working with.
The language, which we call λS0 , is the call-by-value λ-calculus
extended with the two control operators shift0 (S0) and reset0 (〈〉̇).

We introduce three syntactic categories of terms, evaluation
contexts and trails (i.e., stacks of evaluation contexts):

values v ::= λx.e | x
terms e ::= v | e e | 〈e〉 | S0f.e
contexts K ::= • |K e | v K
trails T ::= � |K · T

We use the notation T · T ′ for trail concatenation, defined as
follows:

� · T = T (K · T ) · T ′ = K · (T · T ′)

Contexts and trails are represented inside-out, which is formalized
by the following definition of the plugging of a term inside a
context:

•[e] = e �[e] = e

(K e′)[e] = K[e e′] (K · T )[e] = T [〈K[e]〉]
(v K)[e] = K[v e]



Environments: ρ ::= ρinit | ρ[x 7→ v]

Values: v ::= [x, e, ρ] | k
Contexts: k ::= End | Arg(e, ρ, k) | Fun(v, k)

Metacontexts: mk ::= [ ] | k : mk

Initial configurations: 〈e, ρinit,End : [ ]〉eval

Final configurations: 〈End, v, [ ]〉cont

〈x, ρ, k : mk〉eval ⇒ 〈k, ρ(x),mk〉cont

〈λx.e, ρ, k : mk〉eval ⇒ 〈k, [x, e, ρ],mk〉cont

〈e1e2, ρ, k : mk〉eval ⇒ 〈e1, ρ,Arg(e2, ρ, k) : mk〉eval

〈S0f.e, ρ, k : mk〉eval ⇒ 〈e, ρ[f 7→ k],mk〉eval

〈〈e〉, ρ,mk〉eval ⇒ 〈e, ρ,End : mk〉eval

〈End, v, k : mk〉cont ⇒ 〈k, v,mk〉cont

〈Arg(e, ρ, k), v,mk〉cont ⇒ 〈e, ρ, Fun(v, k) : mk〉eval

〈Fun(k′, k), v,mk〉cont ⇒ 〈k′, v, k : mk〉cont

〈Fun([x, e, ρ], k), v,mk〉cont ⇒ 〈e, ρ[x 7→ v], k : mk〉eval

Figure 1. Abstract machine for λS0

JxK = λk.k x

Jλx.eK = λk.k (λx.JeK)
Je1e2K = λk.Je1K(λf.Je2K(λx.f x k))

J〈e〉K = JeK(λx.λk.k x)

JS0f.eK = λf.JeK

Figure 2. Untyped CPS translation for λS0

There are three contraction rules:
(λx.e)v  e[x/v]

〈v〉  v

〈K[S0f.e]〉  e[f/λx.〈K[x]〉]

where e[x/e′] stands for the usual capture-avoiding substitution of
e′ for x in e. A term matching the left-hand side of a contraction
rule is called a redex.

The reduction rule for shift0 differs from the rule for shift

〈K[Sf.e]〉 〈e[f/λx.〈K[x]〉]〉
in that it removes the reset0 at the root of the redex. This small
difference enables the shift0 operator to inspect the entire context
stack, where shift has access only to the topmost context. This
feature has a big impact on the type systems that we present later
in the article.

Finally, we define the reduction relation on terms representing
programs (i.e., triples 〈e, T,K〉):

K[T [e]]−→K[T [e′]] if e e′

where any closed non-value term can be uniquely represented as
K[T [e]]. The context K (at the bottom of the stack) is the only
one not delimited by a reset0. As we shall see later, having this
last context distinguished from the others is important from the
viewpoint of the type system, because it can be assigned a simpler
type than the other contexts. A trail T along with the distinguished
evaluation context K will be called a metacontext.

2.2 CPS translation
The shift0 control operator allows access to every context in the
trail. What is more, unlike with shift, control effects in a captured
context are not isolated—the captured context, when applied, can
capture contexts present at the invocation site. This ability must be
reflected in the CPS translation for the shift0 operator. In the trans-
lation presented by Shan [32], the trail is represented explicitly as
a list of contexts which must be passed to every continuation. In
our approach, the contexts below the current one are captured by
additional lambda abstractions. The translation for the shift0 oper-
ator captures a context using a lambda abstraction, and the trans-

JxK@ = λl(k : ks).k x@ ks

Jλx.eK@ = λl(k : ks).k (λx.JeK@) @ ks

Je1e2K@ = λl(k : ks).Je1K@ @ ((λf.λlks′.Je2K@ @
((λx.λlks′′.f x@ (k : ks′′)) : ks′)) : ks)

J〈e〉K@ = λlks.JeK@ @ ((λx.λl(k : ks′).k x@ ks′) : ks)

JS0f.eK@ = λl(f : ks).JeK@ @ ks

Figure 3. Untyped uncurried CPS translation for λS0

lation for reset0 introduces a new context represented by the CPS-
translated identity continuation. Hence, just like in Shan’s work,
our CPS accounting for shift0 relies on continuations accepting
continuations as parameters. The entire CPS translation is shown
in Figure 2. Evaluating a well-delimited (i.e., with no dangling
shift0’s) CPS-translated program requires an initial continuation
λx.x. The translation preserves the semantics:

Theorem 1. If e1−→ ∗e2 in λS0 , then Je1K =βη Je2K in λ→.

For reference, and to make it possible for the reader to compare
the evaluation model encoded in our initial CPS translation with
the existing ones [10, 16, 32], we briefly discuss possible modifi-
cations of the CPS translation. First of all, the translation can be
modified so that every translated term takes all its continuation pa-
rameters in one list parameter. Figure 3 presents such an uncurried
CPS translation that targets the untyped lambda-calculus extended
with a separate syntactic category of lists and two new kinds of
expressions: list abstraction λl and list application @. The trans-
lation underlies a continuation-passing style interpreter that, when
defunctionalized [1, 29], gives rise to the abstract machine of Fig-
ure 1. This abstract machine can be seen to be equivalent with the
abstract machine for shift0/reset0 described by Biernacki et al. [10].
(An alternative way to obtain an abstract machine for the language
we consider would be to follow Biernacka and Danvy’s syntactic
correspondence between context-based reduction semantics with
explicit substitutions and abstract machines [7, 8].) Had we decided
to translate terms in such a way that the head and tail of the continu-
ation list are passed as separate arguments, we would have obtained
a CPS translation that coincides with Shan’s [32] and which corre-
sponds exactly to the abstract machine of Biernacki et al. [10].

2.3 From CPS translation to a type system
With the CPS translation defined, one can use the approach of
Danvy and Filinski [13] and build a type system based on this
translation. Let us thus limit our attention to those terms of λS0 ,
whose translations are well-typed terms in λ→. One can then easily
see that the types for variables, lambda abstractions and application
must have the same form as in the type system of Danvy and



Γ, x : τx ` x : τx [τ σ] τ σ
VAR

Γ, x : τ1 ` e : τ2 σ

Γ ` λx.e : τ1
σ−→ τ2 [τ σ′] τ σ′

ABS

Γ ` f : τ1
[τ′1 σ1] τ′3 σ3−−−−−−−−→ τ2 [τ ′4 σ4] τ ′2 σ2 Γ ` e : τ1 [τ ′3 σ3] τ ′4 σ4

Γ ` fe : τ2 [τ ′1 σ1] τ ′2 σ2

APP

Γ, f : τ1
σ1−→ τ2 ` e : τ3 σ2

Γ ` S0f.e : τ1 [τ2 σ1] τ3 σ2
SHIFT0

Γ ` e : τ ′ [τ ′ [τ ′′ σ′′] τ ′′ σ′′] τ σ

Γ ` 〈e〉 : τ σ
RESET0

Figure 4. Type system for λS0 without subtyping

Filinski. And what types should we assign to shift0 and reset0?
Suppose that JeK has type τ , then JS0f.eK = λf.JeK must have the
type τ ′−→ τ , where τ ′ is the type of the captured continuation. For
reset0, for J〈e〉K = JeK (λx.λk.kx) to have type τ , JeK has to have
a type of the form (τ ′−→ (τ ′−→ τ ′′)−→ τ ′′)−→ τ . Thus every use of
shift0 introduces a new function arrow into the type, and every use
of reset0 removes one. This leads us to a recursive definition of
effect annotations, which in a sense “remembers” the number of
nested uses of shift0 inside a term.

We now introduce the syntactic categories of types and effect
annotations:

types τ ::= α | τ σ−→ τ

annotations σ ::= ε | [τ σ] τ σ

The resulting type system for λS0 is shown in Figure 4.
The type annotations require some explanation. Their meaning

is best understood together with types they annotate. The typing
judgment Γ ` e : τ ′1 [τ1 σ1] τ ′2 . . . [τn σn] τ (we omit ε for brevity)
can be read as follows: “the term e in a typing context Γ may
evaluate to a value of type τ when plugged in a trail of contexts
of types τ ′1

σ1−→ τ1, . . . , τ
′
n
σn−−→ τn”. As a special case, Γ ` e : τ

means: “the term e in a typing context Γ may evaluate to a value
of type τ without observable control effects.” Function types also
have effect annotations, which can be thought to be associated with
the return type.

This type system preserves types as stated in Theorem 2 below,
where translations on types and annotated types are defined as
follows:

JαK = α

Jτ1 σ−→ τ2K = Jτ1K−→ Jτ2 σK

Jτ εK = τ

Jτ [τ1 σ1] τ2 σ2K = (JτK−→ Jτ1 σ1K)−→ Jτ2 σ2K

Theorem 2. If Γ ` e : τ σ, then JΓK ` JeK : Jτ σK in λ→.

While interesting, this type system is very restrictive. For ex-
ample, the term λx.S0f.f 〈f x〉 is translated (with administrative
redexes reduced for clarity) to

λk.k (λx.λf.λk.(λk.f x k)(λx.λk.k x)(λx.f x k))

This term cannot be given a type in the simply typed lambda
calculus. The reason is that the type of functions restricts their
use to only those locations in a term, where the number and types
of contexts match exactly. This is an unnecessary restriction—a
function which requires the top k contexts to be of some type can
obviously be run safely when more contexts are present, if the other
contexts can be composed together and accept the function’s return
value. This observation leads us to another, much more expressive
type system, which we present in the next section.

3. The type system with subtyping
3.1 The type system λS0≤

The type system with subtyping for λS0 , called λS0≤ , is shown in
Figure 5. In this type system, the term λx.S0f.f 〈f x〉, which could
not be typed before, is well typed and can be assigned the type
α [α] α−−−→α.

We define three subtyping relations: one defined on types, one
on effect annotations, and (for convenience) one on pairs of types
and effect annotations.

Lemma 1. The subtyping relations are partial orders—they are
reflexive, transitive and weakly antisymmetric.

All subtyping rules are rather straightforward, except the rule
for ε ≤ [τ σ] τ σ, which seems non-intuitive. To get some under-
standing of what this rule means, let us consider an effect-annotated
type where the contexts are effect-free: τ1 [τ ′1]τ2 . . . τn [τ ′n]τf . For
a pure τ to be a subtype of this type, it is required by the rule for
ε ≤ [τ σ] τ σ that τ ′k ≤ τk+1 for all k; in other words, that the
contexts can be composed.

The type system has two distinct rules for function application:
one for pure expressions (i.e., those without control effects), and
one for impure expressions. The rule for pure application seems
not strictly necessary, but its removal reduces the expressiveness of
the type system—for example, the following term

(λf.λy.(λz.〈(λv.λw.y) (f y)〉) 〈f y〉) (λx.(λx.x)x)

can no longer be typed without this rule. The reason is that the
function application inside the subterm λx.(λx.x)x would then
force it into “impure” typing, which makes the typing fail in the
left part of the term because of answer type incompatibility.

Theorem 3 (Subject reduction). If ` e : τ σ and e−→ e′ for some
e′, then ` e′ : τ σ.

Theorem 4 (Progress). If ` e : τ σ, then e is a value, e−→ e′ for
some e′, or e = K[S0f.e]. If σ = ε, the third case cannot occur.

Theorem 5 (Unique decomposition). If ` e : τ and e−→ e′ for
some e′, then e = K[T [r]] for exactly one context K, trail T and
redex r.

3.2 Typing contexts and trails
Even though it is not strictly necessary, it is useful to have sepa-
rate typing rules for contexts and trails as a proof device and for
improving the understanding of the system.

We first have to introduce a different way of looking at the
types of expressions. In the type system shown in Figure 5, we put
emphasis on the argument type of the first context on the trail (or of
the bottom context, if the trail is empty). In the current, alternative
approach, the final answer type will be emphasized.



ε ≤ ε
τ σ ≤ τ ′ σ′

ε ≤ [τ σ] τ ′ σ′
τ2 σ2 ≤ τ1 σ1 τ ′1 σ

′
1 ≤ τ ′2 σ′2

[τ1 σ1] τ ′1 σ
′
1 ≤ [τ2 σ2] τ ′2 σ

′
2

τ ≤ τ ′ σ ≤ σ′

τ σ ≤ τ ′ σ′ α ≤ α
τ ′2 ≤ τ ′1 τ1 σ1 ≤ τ2 σ2

τ ′1
σ1−→ τ1 ≤ τ ′2 σ2−→ τ2

Γ, x : τ ` x : τ
VAR

Γ ` e : τ σ τ σ ≤ τ ′ σ′

Γ ` e : τ ′ σ′
SUB

Γ, x : τ1 ` e : τ2 σ

Γ ` λx.e : τ1
σ−→ τ2

ABS
Γ ` f : τ1−→ τ2 Γ ` e : τ1

Γ ` fe : τ2
APP-PURE

Γ ` f : τ1
[τ′1 σ1] τ′3 σ3−−−−−−−−→ τ2 [τ ′4 σ4] τ ′2 σ2 Γ ` e : τ1 [τ ′3 σ3] τ ′4 σ4

Γ ` fe : τ2 [τ ′1 σ1] τ ′2 σ2

APP

Γ, f : τ1
σ1−→ τ2 ` e : τ3 σ2

Γ ` S0f.e : τ1 [τ2 σ1] τ3 σ2
SHIFT0

Γ ` e : τ ′ [τ ′] τ σ

Γ ` 〈e〉 : τ σ
RESET0

Figure 5. Type system for λS0 with subtyping (λS0≤ )

Let us introduce the syntactic category of trail types (which are
just sequences of function types):

π ::= (τ σ−→ τ)∗

We use ι to denote the empty trail type, and we use juxtaposition
for trail type concatenation.

We define three functions: −→τ σ, which extracts the trail type,
↓(τ σ) which extracts the answer type, and the composition π(τ σ),
which appends a trail type to an effect-annotated type. These func-
tions are defined as follows:

−→τ = ι
−−−−−−−−→
τ ′1 [τ1 σ1] τ σ = (τ ′1

σ1−→ τ1)−→τσ

↓τ = τ

↓(τ ′1 [τ1 σ1] τ σ) = ↓(τ σ)

ι (τ σ) = τ σ

π (τ ′1
σ1−→ τ1) (τ σ) = π (τ ′1 [τ1 σ1] τ σ)

We will omit the parentheses when there is no confusion about
the meaning of the given expression.

Property 1. For any τ and σ, we have τ σ = −→τ σ ↓τ σ.

Property 2. For any π, π′, τ and σ we have (π′π)τ σ = π′(πτ σ).

The typing rules for contexts and trails are shown in Figure 6.
Contexts are assigned function types, and the types of trails are
just lists of context types. We can relate these typings to the typing
relation for terms:

Lemma 2 (Typing contexts). Γ ` K : τ ′ σ−→ τ if and only if
Γ ` λx.〈K[x]〉 : τ ′ σ−→ τ .

Lemma 3 (Typing trails). Γ ` T : π is derivable if and only if for
every e, τ , σ such that Γ ` e : π τ σ one can derive Γ ` T [e] : τ σ.

Additionally, we introduce the notion of pure contexts, which
are not allowed to have occurrences of the shift0 operator not sur-
rounded by a reset0. For this typing relation the following lemma
holds:

Lemma 4 (Typing pure contexts). Γ `P K : τ ′−→ τ if and only if
Γ ` λx.K[x] : τ ′−→ τ .

Pure typing of contexts is a restricted version of the impure
typing, in the sense that even when considering only contexts with
a pure type (i.e., of the form τ −→ τ ′), there are strictly fewer pure
contexts than impure ones. For example, we have

y : α ` λx.〈x (S0f.y)〉 : (α [α] α−−−→α)−→α

but it is not a valid typing for λx.x (S0f.y).
However, every pure context is an impure one:

Lemma 5 (Impure typing of pure contexts). If Γ `P K : τ ′−→ τ ,
then Γ ` K : τ ′−→ τ .

We can now introduce the typing relation for programs. As
witnessed by the unique-decomposition theorem, we can view a
program as composed of three parts: an expression, a trail, and a
pure context at the bottom. The following theorem establishes the
correctness of the rule PROG:

Lemma 6 (Typing programs). Γ ` 〈e, T,K〉 : τ if and only if
Γ ` K[T [e]] : τ .

Next, we formally introduce the notion of metacontexts, which
will play a role in proving termination. A metacontext in our system
is a pair of a trail TM , typed Γ ` TM : π for some π, and a pure
context K, typed Γ `P K : τ ′′−→ τ ′ for some τ ′ and τ ′′, and
where for some τ we have τ ≤ π τ ′′. The intuitive meaning of this
restriction is that the contexts in the trail cannot access contexts
outside of it and they can be composed, so that when given a value
of type τ , they produce a value of type τ ′′, which can be put into
the pure context at the bottom.

Lemma 7 (Typing metacontexts). Γ ` 〈TM ,K〉 : τ → τ ′ if and
only if Γ, x : τ ` K[TM [x]] : τ ′.

Finally, we introduce a different notion of program decomposi-
tion. In a well-typed program, the trail can be split into two parts:
the top part, which is accessible by the expression inside, and the
bottom part, which is guaranteed by the type of the expression to
be inaccessible. This bottom part of the trail, together with the pure
context at the very bottom, form a metacontext. This is made formal
by the following theorem:



Contexts

Γ ` • : τ −→ τ
EMPTY

Γ ` K : τ
σ1−→ τ1 Γ ` e : τ ′ [τ2 σ2] τ3 σ3

Γ ` Ke : (τ ′
[τ1 σ1] τ2 σ2−−−−−−−−→ τ)

σ3−→ τ3
APPL

Γ ` K : τ
σ1−→ τ1 Γ ` v : τ ′

[τ1 σ1] τ2 σ2−−−−−−−−→ τ

Γ ` vK : τ ′
σ2−→ τ2

APPR
Γ ` K : τ1

σ−→ τ2 τ ′1 ≤ τ1 τ2 σ ≤ τ ′2 σ′

Γ ` K : τ ′1
σ′−→ τ ′2

SUB

Pure contexts

Γ `P • : τ −→ τ
EMPTY

Γ `P K : τ1−→ τ2 Γ ` e : τ3

Γ `P Ke : (τ3−→ τ1)−→ τ2
APPL

Γ `P K : τ1−→ τ2 Γ ` v : τ3−→ τ1

Γ `P vK : τ3−→ τ2
APPR

Γ `P K : τ1−→ τ2 τ ′1 ≤ τ1 τ2 ≤ τ ′2
Γ `P K : τ ′1−→ τ ′2

SUB

Trails

Γ ` � : ι
EMPTY

Γ ` K : τ ′ σ−→ τ Γ `M : π

Γ ` K ·M : τ ′ σ−→ τ π
CONS

Subtyping for trail types

ι ≤ ι
τ1

σ−→ τ2 ≤ τ ′1 σ′−→ τ ′2 π ≤ π′

τ1
σ−→ τ2 π ≤ τ ′1 σ′−→ τ ′2 π

′

Metacontexts, programs

Γ ` TM : π Γ `P K : τ ′′−→ τ ′ τ ≤ π τ ′′

Γ ` 〈TM ,K〉 : τ −→ τ ′
META

Γ ` e : τ σ Γ ` T : −→τ σ Γ `P K : ↓τ σ−→ τ ′

Γ ` 〈e, T,K〉 : τ ′
PROG

Figure 6. Typing rules for contexts and trails in λS0≤

Theorem 6. If Γ ` e : τ σ and Γ ` 〈e, T,K〉 : τ ′, then there
exist T1 and TM such that T = T1 · TM , Γ ` T1 : −→τ σ, and
Γ ` 〈TM ,K〉 : ↓τ σ−→ τ ′.

3.3 Termination
We now prove termination of evaluation of closed well-typed ex-
pressions using a variant of the method described in [5, 6]. We be-
lieve that it is instructive to see the proof in full detail. First, the
proof reveals otherwise hidden nuances of how the reduction se-
mantics and the type system interact. Second, it contains explicit
information on how well-typed terms in our language are evalu-
ated: each case of the proof of Lemma 12 corresponds exactly to a
clause of an evaluator which can be extracted from this proof [5, 6].

Let us start by defining three families of mutually inductive
predicates. The families are defined by induction on types: Rτ is
defined on well-typed values and is indexed by their types, T π is
defined on well-typed trails and is indexed by trail types, and finally
Mτ is defined on metacontexts and is indexed by their argument
types. We also define a predicate N (e, T,K) defined on well-
typed programs, which means that the evaluation of this program
terminates, i.e., that K[T [e]]−→ ∗v for some value v.

Rα(v) := >
Rτ ′ σ−→ τ(v) := ∀v′, T, TM ,K.Rτ ′(v′)⇒ T −→τ σ(T )

⇒M↓τ σ(TM ,K)
⇒ N (v v′, T · TM ,K)

T ι() := >
T τ ′ σ−→ τ π(K · T ) := Rτ ′ σ−→ τ(λx.〈K[x]〉) ∧ T π(T )

Mτ(TM ,K) := ∀v.Rτ(v)⇒ N (v, TM ,K)

For the proof, we need several lemmas about the subtyping rela-
tion and its connection to the typing rules and the above predicates.

Lemma 8. If τ ≤ π τ1, Γ ` T : π, Γ ` 〈TM ,K〉 : τ1−→ τ2, then
Γ ` 〈T · TM ,K〉 : τ −→ τ2.

Proof. From Γ ` 〈TM ,K〉 : τ1−→ τ2 for some τ ′, π′ we have Γ `
TM : π′, Γ `P K : τ ′−→ τ2 and τ1 ≤ π′ τ ′. So Γ ` T ·TM : π π′.
From τ1 ≤ π′ τ ′ we have π τ1 ≤ π π′ τ ′, by transitivity from the
assumption τ ≤ π τ1 we have τ ≤ π π′ τ ′.

Lemma 9. 1. The predicates respect the subtyping relations:
R. If τ ≤ τ ′ andRτ(v), thenRτ ′(v).
T. If π ≤ π′ and T π(T ), then T π′(T ).

M. If τ ′ ≤ τ andMτ(TM ,K), thenMτ ′(TM ,K).
2. If τ ′ σ′ ≤ τ σ, T −→τ σ(T ) and M↓τ σ(TM ,K), then for some
T ′, T ′M we have T −−−→τ ′ σ′(T ′),M↓τ ′ σ′(T ′M ,K) and T · TM =
T ′ · T ′M .

Proof. Proof by simultaneous induction. The proofs refer to other
cases of the lemma with smaller subtyping derivations. The only
exception is a reference from (1M) to (1R), but since it does not
introduce a cycle, the induction is justified.

1R. τ = τ1
σ−→ τ2, τ ′ = τ ′1

σ′−→ τ ′2. We have τ ′1 ≤ τ1 and
τ2σ ≤ τ ′2σ′. Let v, T , TM ,K be such thatRτ ′1(v), T −−−→τ ′2 σ

′(T ),
M↓τ ′2 σ′(TM ,K). By induction hypothesis for case (2) we
have T ′ and T ′M such that T −−→τ2 σ(T ′), M↓τ2 σ(T ′M ,K) and
T · TM = T ′ · T ′M . Thus from the assumption Rτ(v) follows
the thesis.

1T. The case π = π′ = ι is trivial. Let π = τ1
σ−→ τ2 π1 and π′ =

τ ′1
σ′−→ τ ′2π

′
1. Then we have τ1 σ−→ τ2 ≤ τ ′1 σ′−→ τ ′2, π1 ≤ π′1, T =

K · T1,Rτ1 σ−→ τ2(λx.〈K[x]〉) and T π1(T1). By induction hy-
pothesis for case (1R) and (1T) we get Rτ ′1 σ′−→ τ ′2(λx.〈K[x]〉)
and T π′

1
(T1), which give us the thesis.



1M. Let v be such that Rτ ′(v). By case (1R) we have Rτ(v), with
Mτ(TM ,K) this gives usN (v, TM ,K).

2. Induction on the subtyping derivation.
• σ′ = ε, σ = ε. Then T = �, τ ′ ≤ τ , Mτ(TM ,K).

Let T ′ = �, T ′M = TM . We thus need to show that
Mτ ′(TM ,K), but that follows from case (1M).
• σ′ = ε, σ = [τ1σ1]τ2σ2. Then τ ′ ≤ τ , τ1σ1 ≤ τ2σ2 , T =
K1 · T ′, T τ σ1−→ τ1(K1), T −−−→τ2 σ2(T ′), M↓τ2 σ2(TM ,K).
Let T ′ = �, T ′M = T · TM . Trivially we have T ι(�),
we need to show that Mτ ′(T · TM ,K). The metacontext
〈T · TM ,K〉 is well-typed by Lemma 8. Let v be such that
Rτ ′(v), I will show thatN (v, T · TM ,K). From case (1T)
we have T τ ′ σ2−→ τ2(K1), by definition of T τ ′ σ2−→ τ2 we
have Rτ ′ σ2−→ τ2(λx.〈K1[x]〉). With Rτ ′(v), T −−−→τ2 σ2(T ′)
and M↓τ2 σ2(TM ,K) we have N ((λx.〈K1[x]〉) v, T ′ ·
TM ,K). Because (λx.〈K1[x]〉) v reduces in single step
to 〈K1[v]〉, we have N (〈K1[v]〉, T ′ · TM ,K), which is
equivalent to N (v,K1 · T ′ · TM ,K), which we wanted to
prove.
• σ′ = [τ ′1 σ

′
1] τ ′2 σ

′
2, σ = [τ1 σ1] τ2 σ2. Then T =

K1 · T1, T τ σ1−→ τ1(K1), T −−−→τ2 σ2(T1), M↓τ2 σ2(TM ,K),
τ ′ ≤ τ and τ ′2 σ′2 ≤ τ2 σ2. By induction hypothesis we
have T ′1, T ′M such that T −−−→τ ′2 σ

′
2
(T ′1),M↓τ ′2 σ′

2
(T ′M ,K) and

T1 · TM = T ′1 · T ′M . From M↓τ ′2 σ′
2
(T ′M ,K) we have

M↓τ ′ σ′(T ′M , ,K). Let T ′ = K1 ·T ′1. From τ1 σ1 ≤ τ ′1 σ′1,
τ ′ ≤ τ , T τ σ1−→ τ1(K1) and the induction hypothesis for
case (1T) we have T τ ′ σ′1−→ τ ′1(K1). With T −−−→τ ′2 σ

′
2
(T ′1) we

have T −−−→τ ′ σ′(K1 · T ′1).

Lemma 10. For every type τ , T τ −→ τ(•) holds.

Proof. By the definition of T τ −→ τ it is sufficient to prove that
Rτ −→ τ(λx.〈x〉). Let v, TM , and K be such that Rτ(v) and
Mτ(TM ,K). We have to show that N ((λx.〈x〉) v, TM ,K). The
expression (λx.〈x〉) v reduces in two steps to v, so it suffices to
proveN (v, TM ,K), which follows fromRτ(v).

Lemma 11. For every type τ ,Mτ(�, •) holds.

Proof. Let v be a value of type τ , then N (v,�, •) is trivially
true.

We now state the main lemma:

Lemma 12. Let Γ ` e : τ σ, where Γ = x1 : τ1, . . . , xn : τn.
Assume that ~v is a sequence of values of length n such that for every
i, Rτi(vi) holds. Then for every trail T such that T −→τ σ(T ) holds,
and for every metacontext 〈TM ,K〉 such that M↓τ σ(TM ,K,)
holds,N (e{~x/~v}, T · TM ,K) holds.

Proof. Induction on the structure of the typing derivation D of e.

• D = SUB(D′, τ ′ σ′ ≤ τ σ). From Lemma 9 we have T ′, T ′M
such that T −−−→τ ′ σ′(T ′),M↓τ ′ σ′(T ′M ,K) and T ·TM = T ′ ·T ′M .
The conclusion follows from the induction hypothesis.
• D = VAR, e = xi. So we have e{~x/~v} = vi, τ = τi,
σ = ε ,T = �, Mτi(TM ,K). By assumption Rτi(vi) and
the definition ofMτi we haveN (vi, TM ,K).
• D = ABS(D′), e = λx.e′. So τ = τ ′′−→σ′τ ′, σ = ε,
T = �, Mτ(TM ,K). As in the previous case, to show that
N ((λx.e′){~x/~v}, TM ,K) we needRτ(λx.e′{~x/~v}).
Let v, T , TM , K be such that we haveRτ ′′(v), T −−−→τ ′ σ′(T ) and
M↓τ ′ σ′(TM ,K). We need to show thatN ((λx.e′{~x/~v}) v, T ·
TM ,K). Because (λx.e′{~x/~v}) v reduces in one step to

e′{~x/~v}{x/v}, it suffices to show N (e′{~x/~v}{x/v}, T ·
TM ,K), which follows from the induction hypothesis.
• D = APP(D1, D2), e = e1 e2. Then σ = [τA σA] τD σD ,
T = K1 · T ′, T τ σA−−→ τA(K1), T −−−−→τB σB(T ′), Γ ` e1 :

τ ′
[τA σA] τB σB−−−−−−−−−→ τ [τC σC ] τD σD , Γ ` e2 : τ ′ [τB σB ] τC σC .

Let e′1 = e1{~x/~v} and e′2 = {~x/~v}. To show thatN (e′1 e
′
2,K1·

T ′ · TM ,K), we can show instead that N (e′1,K1 e
′
2 · T ′ ·

TM ,K) using the induction hypothesis for D1, providing
that T (τ ′

[τA σA] τB σB−−−−−−−−−→ τ)
σC−−→ τC(K1 e

′
2). To show that, let

us unfold the definitions. Let vL, TL, TKL and ML sat-
isfy the appropriate predicates, i.e., Rτ ′ [τA σA] τB σB−−−−−−−−−→ τ(vL),
T −−−−→τC σC(TL) and M↓τC σC(TKL,ML). Then we have to
show that N ((λx.〈K1[x e2]〉) vL, TL · TKL,ML). Because
(λx.〈K1[x e2]〉) vL reduces in one step to 〈K1[vL e2]〉, we
can show instead that N (〈K1[vL e2]〉, TL · TKL,ML). We
will show instead that N (e2, vLK1 · TL · TKL,ML). This
follows for the induction hypothesis for D2, providing that
T τ ′ σB−−→ τB(vLK1). To show that, let us unfold the defini-
tions again. Let vR, TR, TKR and MR be such that Rτ ′(vR),
T −→( τB σB(TR) and M↓τB σB(TKR,MR). We have to show
thatN ((λx.〈K1[vL x]〉) vR, TR ·TKR,MR). Using analogous
reasoning as before, it is sufficient to show thatN (vL vR,K1 ·
TR ·TKR,MR), which follows fromRτ ′ [τA σA] τB σB−−−−−−−−−→ τ(vL).
• D = APP-PURE(D1, D2), e = e1 e2. The proof is similar to

the case for APP.
• D = SHIFT0(D′), e = S0f.e′. So σ = [τ ′σ′]τ ′′σ′′, T = K1 ·
T ′,Rτ σ′−→ τ ′(λx.〈K1[x]〉), T −−−→τ ′′σ′′(T ′) andM↓τ ′′σ′′(TM ,K).
We want to show N (S0f.e{~x/~v},K1 · T ′ · TM ,K), which
is equivalent to N (〈K1[S0f.e{~x/~v}]〉, T ′ · TM ,K). Because
〈K1[S0f.e{~x/~v}]〉 reduces to e{~x/~v}{f/λx.〈K[x]}, it suf-
fices to show that N (e{~x/~v}{f/λx.〈K[x]}, T ′ · TM ,K),
which follows from the induction hypothesis.
• D = RESET0(D′), e = 〈e′〉. Then for some τ ′ we have

Γ ` e′ : τ ′ [τ ′] τ σ. From Lemma 10 have T τ ′−→ τ ′(•),
and thus T −−−−−−−→τ ′ [τ ′] τ σ(• · T ). The induction hypothesis gives us
N (e′{~x/~v}, • · T · TM ,K), which is equivalent to the thesis,
N (〈e′〉{~x/~v}, ·T · TM ,K).

Theorem 7 (Termination). If ` e : τ , then the evaluation of e
terminates, i.e.,N (e,�, •) holds.

Proof. We have T ι(�) and from Lemma 11 we have Mτ(�, •),
thus the theorem follows from Lemma 12.

3.4 Type inference

Type inference in λS0≤ is decidable. For the purpose of type infer-
ence, we replace the rules APP and APP-IND with the following
(equivalent) rule:

Γ ` f : τ ′
σ3−→ τ σ1

Γ ` e : τ ′ σ2 σ � σ1 σ2 σ3

Γ ` fe : τ σ
APP-COMP,

where the relation� is defined as follows:

ε� [τ σ] τ σ �

ε� ~σ

ε� ε ~σ

[τf σf ] τ2 σ2 � ~σ

[τf σf ] τ1 σ1 � [τ2 σ2] τ1 σ1 ~σ

Expressions of the form σ ≤? σ will be called subtyping
constraints, and expressions of the form σ �? ~σ will be called



JαK = α

Jτ1 σ−→ τ2K = Jτ1K−→ Jτ2 σK

Jτ εK = JτK
Jτ [τ1 σ1] τ2 σ2K = (JτK−→ Jτ1 σ1K)−→ Jτ2 σ2K

Jα ≤ αK = λx.x

Jτ ′1
σ1−→ τ1 ≤ τ ′2 σ2−→ τ2K = λf.λx.Jτ1 σ1 ≤ τ2 σ2K(f(Jτ ′2 ≤ τ ′1Kx))

Jτ ε ≤ τ ′ εK = Jτ ≤ τ ′K
Jτ ε ≤ τ ′ [τ1 σ1] τ2 σ2K = λx.λf.Jτ1 σ1 ≤ τ2 σ2K(f(Jτ ≤ τ ′Kx))

Jτ [τ1 σ1] τ ′1 σ
′
1 ≤ τ ′ [τ2 σ2] τ ′2 σ

′
2K = λf.λg.Jτ ′1 σ′1 ≤ τ ′2 σ′2K(f(λx.Jτ2 σ2 ≤ τ1 σ1K(g(Jτ ≤ τ ′Kx))))

JxKVAR = x

JeKSUB(D,τ σ≤τ ′ σ′) = Jτ σ ≤ τ ′ σ′KJeKD
Jλx.eKABS(D) = λx.JeKD

JfeKAPP-PURE(D1,D2) = JfKD1JeKD2

JfeKAPP(D1,D2) = λk.JfKD1(λf.JeKD2(λe.fek))

JS0f.eKSHIFT0(D) = λf.JeKD
J〈e〉KRESET0(D) = JeKD(λx.x)

Figure 7. Type-directed CPS translation for λS0≤

composition constraints. Inside the constraints, the syntax of effect
annotations is extended by annotation variables δ.

We will be using substitutions defined on both the type variables
and annotation variables. We call a substitution σ-grounding, if
its values do not contain any annotation variables. We say that a
substitution s solves a constraint σ1 ≤? σ2 (σ1 �? ~σ) if and only
if s(σ1) ≤ s(σ2) (s(σ1)� s(~σ)) is derivable.

Theorem 8 (Principal types). For every term e and typing environ-
ment Γ there exist: α, δ, a set of τσ-subtyping constraints S, and a
set of composition constraints C, such that:

1. For every σ-grounding substitution s which solves S and C we
have Γ ` e : s(α) s(δ).

2. For every τ , σ satisfying Γ ` e : τ σ there exists a σ-grounding
substitution s such that s(α) = τ , s(δ) = σ and s solves S and
C.

The type inference algorithm finds the principal type (along
with the unsolved constraints) in polynomial time and it also gener-
ates a typing derivation skeleton, where subtyping derivations have
to be filled in. In order to check if the term is actually well-typed
(and to obtain a concrete typing derivation), one has to find a σ-
grounding substitution which solves the inequalities.

3.5 Type-directed CPS translation
Having extended the type system with subtyping, we can derive
from it a type-directed CPS translation, which takes into account
the additional information given by the subtyping. This translation,
defined in Figure 7, targets the simply-typed lambda calculus, and
as the CPS translation of Figure 2, it preserves types:

Theorem 9 (Type preservation). If D is a typing derivation of
Γ ` e : τ σ in λS0≤ , then JΓK ` JeKD : Jτ σK in λ→.

The derivations of the subtyping relation are translated to coer-
cion functions, which are typed as expected:

Lemma 13. If τ σ ≤ τ ′ σ′, then ` Jτ σ ≤ τ ′ σ′K : Jτ σK−→ Jτ ′ σ′K
in λ→. If τ ≤ τ ′, then ` Jτ ≤ τ ′K : JτK−→ Jτ ′K in λ→.

Another interesting property of the translation is that it keeps
terms annotated as pure in direct style. This is similar to the selec-

tive translations presented in [24], [27], and recently in [31], which
also use effect annotations to distinguish pure terms from effectful
ones. The property suggests that the translation presented here may
be useful in implementing shift0/reset0 in functional programming
languages.

Unfortunately, the translation does not preserve reductions. For
example, let us consider the term 〈S0f.f〉. We have ` 〈S0f.f〉 :
τ → τ and 〈S0f.f〉 → λx.〈x〉. For the simplest derivation D, we
have

J〈S0f.f〉KD = (λf.f) (λx.x)

and for the simplest derivation D′, we have

Jλx.〈x〉KD′ = λx.(λx.λk.(λx.x) (k ((λx.x)x)))x (λx.x).

So we cannot β-reduce J〈S0f.f〉KD to Jλx.〈x〉KD′ , although they
are β-equal. For this reason, this CPS translation could not be used
as-is for proving termination of evaluation of well-typed terms in
λS0≤ .

4. Programming examples
4.1 Prototype implementation

In order to study the applications of the type system λS0≤ , presented
in this article, to practical programming, we have developed its pro-
totype implementation. The implementation adds some standard
syntactic sugar to the language and extends it with integers, alge-
braic data types and recursion.

We extend the syntax as follows:

e ::= . . . | true | false | if e then e else e
| nil | cons(e, e) | case e {nil−→ e; cons(x1, x2)−→ e}
| k | e⊕ e | e R e | fixx.e

τ ::= . . . | int | bool | list(τ)

The typing rules for new expressions introduced above are given in
Figure 8.

In the implementation language, the string @f.e means S0f.e,
and <e> means 〈e〉. The rest of the syntax used is ML-like.



Γ ` true : bool
TRUE

Γ ` false : bool
FALSE

Γ ` b : bool σ1

Γ ` e1 : τ σ2 Γ ` e2 : τ σ2 σ � σ1 σ2

Γ ` if b then e1 else e2 : τ σ
IF

Γ ` k : int
INT

Γ ` k1 : int σ1 Γ ` k2 : int σ2 σ � σ1 σ2

Γ ` k1 ⊕ k2 : int σ
ARITH

Γ ` k1 : int σ1 Γ ` k2 : int σ2 σ � σ1 σ2

Γ ` k1 R k2 : bool σ
REL

Γ ` nil : list(τ)
NIL

Γ ` h : τ σ1 Γ ` t : list(τ) σ2 σ � σ1 σ2

Γ ` cons(h, t) : list(τ) σ
CONS

Γ ` e : list(τl) σ1 Γ ` e1 : τ σ2

Γ, h : τl, t : list(τl) ` e2 : τ σ2 σ � σ1 σ2

Γ ` case e{nil−→ e1; cons(h, t)−→ e2} : τ σ
CASE

Γ, x : τ ` e : τ

Γ ` fix x.e : τ
FIX

Figure 8. Typing rules for booleans, integers, lists and recursion

4.2 Example—prefixes
The prefixes example shown in Figure 9 has been considered in [2]
and in [6]. The function prefixes lists prefixes of a given list,
e.g., prefixes [1,2,3] yields [[1],[1,2],[1,2,3]]. This
example cannot be typed in the original type system of Danvy
and Filinski, because the captured continuation is applied in con-
texts with different answer types. In our type system, this prob-
lem is taken care of by the subtyping relation. In the first oc-
currence (k []) the continuation is simply given the pure type
list(int)−→ list(int). In the second (k (w xs)), it is given a more
complex type list(int) [list(int)] list(int)−−−−−−−−→ list(int).

4.3 Example—partition
The prefixes example does not take advantage of the semantics of
shift0, because it can be typed with flat effect annotations. This
is not the case for partition, shown in Figure 10. This program
partitions a list of integers into three parts: the ones less than,
equal, and greater than a number given as a parameter, maintain-
ing the original order between the integers in each group, e.g.,
partition 3 [4,1,3,5,2,3] yields [1,2,3,3,4,5]. The idea
behind this example is that the two reset0’s are used as “markers”
for the positions in the result where we insert new elements, and
shift0 is used to reach those markers.

The inner function part is given the following type:

list(int) [list(int)] list(int) [list(int)] list(int)−−−−−−−−−−−−−−−→ list(int)

Hence, it requires two contexts, both of the type list(int)−→ list(int),
and returns a final value of type list(int). These contexts are the
“accumulators” for the elements less than and equal to the given
value.

let prefixes xs =
let w l = case l {

Nil -> @k. Nil
| Cons(x, xs) ->

Cons(x, @k. <Cons(k [], <k (w xs)>)>)
} in <w xs>

Figure 9. Example program—prefixes

let partition a l =
let part l = case l {

Nil -> []
| Cons(h,t) ->

if h > a
then Cons(h, part t)
else if h == a

then @f. Cons(h, <f (part t)>)
else @f g. Cons(h, <g <f (part t)>>)

} in <<part l>>

Figure 10. Example program—partition

The subtyping relation is crucial for typing this example. In
particular, in the non-recursive Nil case, the following subtyping
is used:

list(int) ≤ list(int) [list(int)] list(int) [list(int)] list(int),

where the subtyping derivation for the effect annotations is as
follows:

list(int) ≤ list(int)
list(int) ≤ list(int) ε ≤ ε

ε ≤ [list(int)] list(int)
ε ≤ [list(int)] list(int) [list(int)] list(int)

Using the translation from Figure 7 we obtain the following coer-
cion function (reduced to normal form for clarity):

λx.λk1.λk2.k2 (k1 x)

We can see that in the translated term the composition of the
“accumulator” contexts after traversing the entire input list is done
by the coercion function.

5. Relation to shift/reset
The shift operator can be defined with shift0 and reset0 by putting
a reset0 inside a shift0: Sf.e = S0f.〈e〉; reset0 then behaves just
like reset. Using this definition, one can check how the type system
presented here relates to the type system for shift/reset introduced
by Danvy and Filinski [14] (let us call their system λS→). First,
we define a translation from λS→ to λS0≤ on terms and types (the
syntactic forms not mentioned below translate homomorphically):

τ = τ

τ1 τ3 −→ τ4τ2 = τ1
[τ3] τ4−−−−→ τ2

Sf.e = S0f.〈e〉
The translation on typing derivations is shown in Figure 11.

Using this translation, one can prove the following result:

Theorem 10. If Γ; τ1 ` e : τ ; τ2 in λS→, then Γ ` e : τ [τ1] τ2 in
λS0≤ .

One can also consider the CPS translations in both systems λS→
and λS0≤ . First, we notice that the CPS translations of the typing
derivations resulting from the translation in Figure 11 are β-equal



Γ, x : τ ; τ ′ ` x : τ ; τ ′
VAR

Γ, x : τ ` x : τ
VAR

...

τ ≤ τ [τ ′] τ ′

Γ, x : τ ` x : τ [τ ′] τ ′
SUB

Γ, x : τ ; τ1 ` e : τ ′; τ2

Γ; τ ′′ ` λx.e : (τ τ1 −→ τ2τ
′); τ ′′

ABS

Γ, x : τ ` e : τ ′ [τ1] τ2

Γ ` λx.e : τ
[τ1] τ2−−−−→ τ ′

ABS
...

τ
[τ1] τ2−−−−→ τ ′ ≤ τ [τ1] τ2−−−−→ τ ′[τ ′′] τ ′′

Γ ` λx.e : τ
[τ1] τ2−−−−→ τ ′ [τ ′′] τ ′′

SUB

Γ; τ ′4 ` f : (τ1 τ ′1 −→ τ ′3
τ2); τ ′2

Γ; τ ′3 ` e : τ2; τ ′4

Γ; τ ′1 ` fe : τ2; τ ′2
APP

Γ ` f : τ1
[τ′1] τ′3−−−−→ τ2 [τ ′4] τ ′2 Γ ` e : τ1 [τ ′3] τ ′4

Γ ` fe : τ2 [τ ′1] τ ′2
APP

Γ, f : (τ τ ′ −→ τ ′τ1); τ3 ` e : τ3; τ2

Γ; τ1 ` Sf.e : τ ; τ2
SHIFT

Γ, f : τ [τ′] τ′−−−−→ τ1 ` e : τ3 [τ3] τ2

Γ, f : τ [τ′] τ′−−−−→ τ1 ` 〈e〉 : τ2
RESET0

Γ ` S0f.〈e〉 : τ [τ1 [τ ′] τ ′] τ2
SHIFT0

...

τ [τ1 [τ ′] τ ′] τ2 ≤ τ [τ1] τ2

Γ ` S0f.〈e〉 : τ [τ1] τ2
SUB

Γ; τ1 ` e : τ1; τ

Γ; τ ′ ` 〈e〉 : τ ; τ ′
RESET

Γ ` e : τ1 [τ1] τ

Γ ` 〈e〉 : τ
RESET0

...

τ ≤ τ [τ ′] τ ′

Γ ` 〈e〉 : τ [τ ′] τ ′
SUB

Figure 11. Embedding of Danvy and Filinski’s type system λS→ into λS0≤

to the standard CPS translations [14]. In order to formalize this
observation we introduce the following notation. If D is a typing
derivation in λS→, then D is the corresponding typing derivation in
λS0≤ , obtained using the translation inductively defined in Figure 11.

Lemma 14. Let De be a typing derivation for the term e in λS→.
Then the following equalities hold:

• JSf.eKDSf.e
=β λk.JeKDe{f/λx.λk

′.k′ (k x)}(λx.x)

• J〈e〉KD〈e〉
=β λk.k(JeKDe(λx.x))

As a corollary, we can prove the following theorem by straight-
forward induction:

Theorem 11. Let e be a well-typed term in λS→, and let D be its
typing derivation. Then JeK =β JeKD .

The untyped CPS translations of Section 2.2 also induce a
CPS translation for shift and reset. For instance, the curried CPS
translation of Figure 2 yields:

JSf.eK = λf.JeK (λx.λk.k x)

J〈e〉K = JeK(λx.λk.k x)

It is interesting to observe that although this CPS translation
validates the standard reduction semantics of shift and reset:

〈v〉  v

〈K[Sf.e]〉  〈e[f/λx.〈K[x]〉]〉
it generates a different equational theory than the one of the stan-
dard CPS translation for shift and reset [22]. For example, the equa-
tion

〈〈e〉〉 = 〈e〉
is not sound with respect to the presented CPS translation. So in a
sense, by using the CPS translation for shift0 and reset0 we have
obtained a variant of shift and reset. However, when considered in
the type system with subtyping, shift0 and reset0 give rise to the
standard shift and reset, as demonstrated by Lemma 14.

Each of the CPS translations of Section 2.2 determines a defini-
tion of shift0 and reset0 in the corresponding continuation monad.
Since we can represent arbitrary computational monads in direct
style using shift and reset [18], we obtain two static simulations of
shift0 and reset0. The simulation obtained from the uncurried trans-
lation of Figure 3 is similar to the one presented by Shan [32], but
the one obtained from the translation of Figure 2 is novel:

S0f.e := Sk.λc.(λf.〈(λx.λk.k x) e〉)
(λx.Sk′.λc′.k x c (λx′.k′ x′ c′))

〈e〉0 := Sk.λc.〈(λx.λk.k x) e〉 (λx.λk.k x) (λx.k x c)

runS0 e := 〈(λx.λk.k x) e〉 (λx.x)

We can also consider the type system of [6], which we call λSB.
Again, we first define a translation on terms, types and context
types (as before, syntactic forms not mentioned below are trans-
lated homomorphically):

b = τb

τ1 τ3 −→ τ4τ2 = τ1
[τ3] τ4−−−−→ τ2

τ1 B τ2 = τ1−→ τ2

k ←↩ e = k e

Sk.e = S0k.〈e〉
Next, we can write a translation on typing derivations, which

satisfies the following theorem:

Theorem 12. If Γ,∆; τ1 ` e : τ ; τ2 in λSB, then Γ ∪ ∆ ` e :
τ [τ1] τ2 in λS0≤ .

For both type systems for shift considered here, there exist terms
which are not well-typed in those systems, but their translation to
λS0≤ is well-typed. In particular, the following term:

(λf.λy.(λz.〈(λv.λw.y) (f y)〉) 〈f y〉) (λx.x)

is a valid term and cannot be typed in neither of the two systems.
However, it translates without changes to λS0≤ , where it is well



ε ≤ ε
τ ≤ τ ′

ε ≤ [τ ] τ ′
τ2 ≤ τ1 τ ′1 ≤ τ ′2

[τ1] τ ′1 ≤ [τ2] τ ′2

τ ≤ τ ′ σ ≤ σ′

τ σ ≤ τ ′ σ′ α ≤ α
τ ′2 ≤ τ ′1 τ1 σ1 ≤ τ2 σ2

τ ′1
σ1−→ τ1 ≤ τ ′2 σ2−→ τ2

Γ, x : τ ` x : τ
VAR

Γ ` e : τ σ τ σ ≤ τ ′ σ′

Γ ` e : τ ′ σ′
SUB

Γ, x : τ1 ` e : τ2 σ

Γ ` λx.e : τ1
σ−→ τ2

ABS
Γ ` f : τ1−→ τ2 Γ ` e : τ1

Γ ` fe : τ2
APP-PURE

Γ ` f : τ1
[τ′1] τ′3−−−−→ τ2 [τ ′4] τ ′2 Γ ` e : τ1 [τ ′3] τ ′4

Γ ` fe : τ2 [τ ′1] τ ′2
APP

Γ, f : τ1−→ τ2 ` e : τ3

Γ ` S0f.e : τ1 [τ2] τ3
SHIFT0

Γ ` e : τ ′ [τ ′] τ

Γ ` 〈e〉 : τ
RESET0

Figure 12. Type system for λS0 with flat effect annotations (λS≤)

typed (for example, it can be assigned the type α−→ (β−→α)). In
this sense, the type system presented here is strictly more expres-
sive than the other systems.

An interesting feature of both translations is that a non-empty
type annotation never occurs inside another type annotation—the
annotations are “flat.” Thus one can consider a variant of the λS0≤
type system, which enforces this restriction syntactically:

τ ::= α | τ σ−→ τ

σ ::= ε | [τ ] τ

The typing rules for this system (called λS≤) are shown in Figure 12.
In this type system shift0 is forbidden from being used inside

another shift0 without a corresponding control delimiter and, there-
fore, only the top context of the stack can be accessed by control
operations. It follows that in this type system shift0 has the seman-
tics of shift. We can thus view this type system as an exotic type
system for the shift operator (that is why we call it λS≤).

6. Related work
6.1 Relation to the Scala implementation
The type system and the selective CPS-translation presented here
resemble strongly those presented by Rompf et al. in [31] for the
programming language Scala. The presentation in [31] is based on
Scala and is somewhat informal, so the exact comparison is not
possible, but still one can see the following similarities:

• Our annotations (from the type system λS≤) correspond to @cps
annotations. For example, our type α [β] γ corresponds to
A @cps[B, C] in Scala.
• The type system of Scala distinguishes pure and impure expres-

sions as our type system does. In particular, as in our restricted
system with flat annotations, the expression inside a shift must
have a pure type, the entire expression has an impure type, and
the captured continuation has a pure function type.
• Scala’s Shift class used for implementing delimited control,

which implements the continuation monad, is constructed by
shift and consumed by reset, in the same way that in our transla-

tion shift0 introduces a lambda abstraction and reset0 eliminates
it.
• Our annotation composition relation � introduced in Sec-

tion 3.4 corresponds to the comp control effect composition
operation.

The type system in [31] does not allow shift to be used inside
another shift—it has to be put inside a new reset. This is what
happens with the shift0 operator with flat effect annotations in our
type system. This reinforces our opinion that Scala implements the
restricted shift0/reset0 operators, which only happen to coincide
with shift/reset.

6.2 Substructural type system of Kiselyov and Shan
The type system for shift0/reset0 introduced by Kiselyov and
Shan [26] shares many properties with the type system presented
in this work—in particular, strong type soundness and termination.
In their work, expressions and evaluation contexts are treated as
structure in linear logic, where structural rules play a vital role.
Moreover, their type system abstractly interprets (in the sense of
abstract interpretation of Cousot and Cousot [11]) small-step re-
duction semantics of the language and it does not require effect
annotations in judgments and arrow types. Instead these annota-
tions occur in types and cotypes assigned to terms and coterms,
respectively. In terms of presentation, our system is very close to
the well-known type system by Danvy and Filinski and seems more
conventional than Kiselyov and Shan’s. Both type systems allow
for answer type modifications and for exploring the stack of con-
texts beyond the nearest control delimiter. While in our type system
subtyping is built in and plays a major role, leading to a clever CPS
translation, in Kiselyov and Shan’s work it is just an entailment of
the type system.

Our type system can be embedded in the type system of Kise-
lyov and Shan. A converse translation appears to be impossible be-
cause their language is richer: it includes an operator $, which is a
generalization of reset0 and, in a sense, the inverse of the shift0 op-
erator. Because our language does not differentiate between func-
tions and contexts, it is currently not clear how to include this op-
erator in it, so the subject requires further study.



7. Future work
The type system presented here is monomorphic. We are planning
to explore how adding polymorphism (let-polymorphism, system
F-like explicit polymorphism) affects the system. We expect that, as
in the polymorphic type system of Asai and Kameyama presented
in [2], it should be safe to generalize the types of pure terms.
Also, because of the presence of subtyping, we will need to store
constraints about generalized variables in the polymorphic types,
as in [21].

Because of the similarities of the system presented here to the
Scala implementation of delimited continuations [31], we are going
to investigate whether it would be possible to implement our sys-
tem in Scala. Our type annotations translate to Scala by nesting the
@cps annotations already used by the current implementation of de-
limited control. For example, the effect-annotated type α [α]α [α]α
would translate to Scala’s type A @cps[A, A @cps[A, A]].

Another important aspect of this work that has not been re-
searched yet are equational theories of shift0 and reset0 in the un-
typed and typed settings as well as of the variant of shift and reset in
the untyped setting, described in Section 5. In particular, it seems
vital to understand the role of the subtyping relation in the equa-
tional theories of the typed control operators.

8. Conclusion
We have presented a new type system for the delimited-control op-
erators shift0 and reset0 that has been derived from a CPS transla-
tion for these control operators and that generalizes Danvy and Fil-
inski’s type system for shift and reset. The type system is equipped
with two subtyping relations: one on types and the other one on
effect annotations describing a stack of contexts in which a given
expression can be embedded. The subtyping mechanism makes it
possible to coerce pure expressions into effectful ones.

The effect annotations and the corresponding subtyping relation
are used to guide a selective CPS translation that precisely takes
into account the information about the contexts surrounding a trans-
lated expression. In particular, it leaves pure expressions in direct
style. Such a translation seems promising, if one would like to im-
plement full-fledged shift0 and reset0, e.g., in Scala (instead of their
flat version that accidentally coincides with shift and reset [31]). As
shown in Section 4, the full power of shift0 and reset0 can be very
useful and we believe that there are other interesting applications
of these operators waiting to be discovered.

The present article also demonstrates the effectiveness of the
context-based method of reducibility predicates [5, 6] that has
turned out to be the right way to tackle the non-trivial problem of
termination of evaluation for the case of the type-and-effect system
with subtyping considered here. It can be observed (and remains to
be verified, e.g., in Coq) that the computational content of this con-
structive proof takes the form of a type-directed evaluator in CPS
that corresponds to the type-directed CPS translation presented in
this work.
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